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Abstract. Let z ∈ Q and let γ be an ℓ-adic path on P1
Q̄\{0, 1,∞} from

→

01 to z.

For any σ ∈ Gal(Q̄/Q), the element x−κ(σ)fγ(σ) ∈ π1(P1
Q̄ \{0, 1,∞},

→

01)pro−ℓ.

After the embedding of π1 into Q{{X,Y }} we get the formal power series
∆γ(σ) ∈ Q{{X, Y }}. We shall express coefficients of ∆γ(σ) as integrals over
(Zℓ)r with respect to some measures Kr(z). The measures Kr(z) are con-
structed using the tower

(

P1
Q̄ \({0,∞}∪µℓn

)

n∈N of coverings of P1
Q̄ \{0, 1,∞}.

Using the integral formulas we shall show congruence relations between coef-
ficients of the formal power series ∆γ(σ). The congruence relations allow the
construction of ℓ-adic functions of non-Archimedean analysis, which however

rest mysterious. Only in the special case of the measures K1(
→

10) and K1(−1)
we recover the familiar Kubota-Leopoldt ℓ-adic L-functions. We recover also
ℓ-adic analogues of Hurwitz zeta functions. Hence we get also ℓ-adic analogues
of L-series for Dirichlet characters.

0. Introduction

0.0 Review of results In [15] we have introduce ℓ-adic Galois polylogarithms. For
each z ∈ Q, lk(z) is a function from GQ to Qℓ. These functions lk(z) are analogues

of the classical polylogarithms Lik(z) =
∑∞

n=1
zn

nk . In the complex case it is natural
to replace k by an arbitrary complex number s and to study a function of two
variables z and s defined by the series

∑∞
n=1

zn

ns . Notice that for z = 1 we get the

Riemann zeta function ζ(s) =
∑∞

n=1
1
ns .
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2 ZDZIS LAW WOJTKOWIAK

We would like to replace k in lk(z) by any s ∈ Zℓ. We shall be able to do it.
However the function we get remains mysterious to us. We would like to relate it
to an ℓ-adic non-Archimedean analogue of the complex function

∑∞
n=1

zn

ns . At least
we would like to relate its values at positive integers to ℓ-adic non-Archimedean
polylogarithms. We are not able to do this. Only in a few special cases we do get
the expected results.

For z =
→
10 the functions we get, are the Kubota-Leopoldt ℓ-adic L-functions

(see [6]). The key point is the formula

(1) l2k(
→
10) =

B2k

2 · (2k)!
(1− χ2k)

proved in [20], but stated already in [5]. In [10] there is another proof of the formula
(1). We get also familiar functions for z = −1.

The ℓ-adic polylogarithm lk(z) is by the very definition the coefficient at Y Xk−1

of the power series

logΛγ ∈ Qℓ{{X,Y }},

where γ is a path on P1
Q̄ \ {0, 1,∞} from

→
01 to z (see [15, Definition 11.0.1.]). The

related function

lik(z)

we define as the coefficient at Y Xk−1 of the power series

log
(

exp(−l(z)γ X) · Λγ

)

∈ Qℓ{{X,Y }}.

For z =
→
10 and γ the canonical path on P1

Q̄ \ {0, 1,∞} from
→
01 to

→
10, the power

series Λγ was studied in [1] and [4].
In [9] H. Nakamura and the author have introduced a certain measure K1(z) on

Zℓ and shown that

lik(z) =
1

(k − 1)!

∫

Zℓ

xk−1dK1(z).

It has been recovered in this way the Gabber formula of the Heisenberg cover (see
[2]).

In this paper, for any r ≥ 1 we construct measures Kr(z) on (Zℓ)
r which gener-

alize the measure K1(z). Then we show that the coefficient at

Xa0Y Xa1Y Xa2 . . . Xar−1Y Xar

of the power series

log
(

exp(−l(z)γX) · Λγ

)

∈ Qℓ{{X,Y }}

is given by the integral

(2)
1

a0!a1! . . . ar!

∫

(Zℓ)r
(−x1)

a0(x1 − x2)
a1 . . . (xr−1 − xr)

ar−1(xr)
ardKr(z) .

Using this integral expression we shall be able to prove congruence relations
between coefficients of the power series log

(

exp(−l(z)γX) · Λγ

)

.
In the integral (2), after some modifications, we can replace the integers a0, . . . , ar

by arbitrary s0, . . . , sr in Zℓ. However the obtained functions are mysterious. As
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we already mentioned, only for r = 1 and z =
→
10 we do get the familiar Kubota-

Leopoldt ℓ-adic L-functions. The familiar functions we get also for r = 1 and
z = −1.

Let ξm = e
2πi
m . We assume that ℓ does not divide m. Then using measures

K1(ξ
−k
m )±K1(ξ

k
m) we get ℓ-adic analogues of Hurwitz zeta function. Hence we get

also ℓ-adic analogues of L-series for Dirichlet characters.
Below we fix notations and conventions used in the paper. We review also the

definitions of ℓ-adic polylogarithms and measures.

0.1 Notations and conventions Throughout the paper we fix the following no-
tation and conventions.

We fix a rational prime ℓ. If V is an algebraic variety over a number field K and
v and z are K-points or tangential points defined over K we denote by

π1(VK̄ , v)

the maximal pro-ℓ quotient of the étale fundamental group of VK̄ based at v and
by

π(VK̄ ; z, v)

the π1(VK̄ , v)-torsor of ℓ-adic paths on VK̄ from v to z. We recall that an ℓ-adic
path γ from v to z on VK̄ is an isomorphism of fiber functors γ : Fv → Fz .

If α is an ℓ-adic path from a to b and β from b to c then

β · α

is an ℓ-adic path from a to c.
When we speak about a multiplicative embedding E of π1 into an algebra of

formal power series we mean that

E(β · α) = E(β) ·E(α).

We assume that K̄ ⊂ C. Then we have the comparison homomorphism

π1(V (C), v)→ π1(VK̄ , v)

and the comparison map

π(V (C); z, v)→ π(VK̄ ; z, v) .

In this paper path, homotopy class of path and ℓ-adic path mean exactly the
same. They mean an ℓ-adic path as defined above. We usually shall say path if we
can take an element of π1(V (C), v) or π(V (C); z, v).

If σ ∈ GK and γ is a path then

σ(γ) = σ ◦ γ ◦ σ−1 .

The action of π1 and GK on germs of algebraic functions is the left action.
We define

fγ(σ) := γ−1 · σ(γ) ∈ π1(VK̄ , v) .

We denote by

N

the set of positive integers and 0. For α ∈ Qℓ and k ∈ N we denote by

Cα
k
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the binomial coefficients. For any positive integer m we set

ξm := e
2π

√−1
m .

0.2 Algebraic preliminaries and ℓ-adic polylogarithms We denote by

Qℓ{{X,Y }}

the Qℓ-algebra of formal power series in two non-commuting variables X and Y .
The set of Lie polynomials in Qℓ{{X,Y }} we denote by Lie(X,Y ). It is a free Lie
algebra on X and Y . The set of formal Lie power series in Qℓ{{X,Y }} we denote
by L(X,Y ). The vector space L(X,Y ) is a Lie algebra, the completion of Lie(X,Y )
with respect to the filtration given by the lower central series. We denote by

I2

the closed Lie ideal of L(X,Y ) generated by Lie brackets with two or more Y ’s.
Let A,B be elements of a Lie algebra. We shall use the following inductively

defined short hand notation

[B,A(0)] := B and [B,A(n+1)] := [[B,A(n)], A] if n ≥ 0.

If P is a formal power series without a constant term we shall write expP or eP to
denote the formal power series

∞
∑

n=0

Pn

n!
.

Let A,B ∈ L(X,Y ). The formula

A©B := log(expA · expB)

defines a group multiplication in the set L(X,Y ) and it is called the Baker-Campbell
-Hausdorff product. In the group L(X,Y ) one has

A© (−A) = 0 .

If α ∈ Qℓ then one can raise elements of the group L(X,Y ) to the power α and

Aα = αA .

We denote by

I ′2(X,Y )

the closed ideal of Qℓ{{X,Y }} generated by all monomials with two Y ’s and by
monomials X iY for i > 0.

The well known formulas

X © Y ≡ X + Y
X

expX − 1
mod I ′2(X,Y )

and

Y ©X ≡ X + Y
X expX

expX − 1
mod I ′2(X,Y )

are easy consequences of the next lemma.

Lemma 0.2.1. Let α, β ∈ Q×
ℓ and let A and B belong to L(X,Y ). We assume

that

A ≡ αX + YΦ1(X) mod I ′2(X,Y ) and B ≡ βX + Y Φ2(X) mod I ′2(X,Y ) ,
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where Φ1(X) and Φ2(X) are power series in X . Then we have

A©B ≡ Y
(

Φ1(X)
exp(αX)− 1

αX
eβX +Φ2(X)

exp(βX)− 1

βX

)

·

(α + β)X

exp((α + β)X)− 1
+ (α+ β)X mod I ′2(X,Y ) .

( If the constant γ = 0 then the power series exp(γX)−1
γX is equal 1.)

Proof. We omit the proof of the lemma, which is the standard calculation on
formal power series. It is similar to the proof of the two well known formulas given
above. �

In the Lie algebra L(X,Y ) we set

Z := −log(eXeY ) .

Then Z ≡ −X − Y X
expX−1 modulo I ′2(X,Y ).

We recall the definition of ℓ-adic polylogarithms (see [15]). Let x and y be the

generators of the free pro-ℓ group π1(P
1
Q̄ \ {0, 1,∞},

→
01) as on Picture 1.

Picture 1

Let

E : π1(P
1
Q̄ \ {0, 1,∞},

→
01)→ Qℓ{{X,Y }}

be the continuous multiplicative embedding defined by

E(x) = expX and E(y) = expY .

Let z be a Q-point or a tangential point defined over Q of P1 \ {0, 1,∞}. Let γ be

an ℓ-adic path from
→
01 to z on P1

Q̄ \ {0, 1,∞} and let σ ∈ GQ. We set

Λγ(σ) := E(fγ(σ)) ∈ Qℓ{{X,Y }}.

The formal power series logΛγ(σ) is a Lie series. We defined ℓ-adic Galois polylog-
arithms ln(z)γ : GQ → Qℓ by the congruence

(3) logΛγ(σ) ≡ l(z)γ(σ)X +
∞
∑

n=1

ln(z)γ(σ)[Y,X
(n−1)] mod I2 .

The ℓ-adic logarithm l(z)γ is the Kummer character κ(z) associated to z and
l1(z)γ = κ(1− z).

Another version of ℓ-adic polylogarithms

lin(z)γ : GQ → Qℓ
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we define by the congruence

log
(

exp(−l(z)γ(σ)X) · Λγ(σ)
)

≡

∞
∑

n=1

lin(z)γ(σ)[Y,X
(n−1)] mod I2.

The relation between these two versions of ℓ-adic polylogarithms is given by the
equality of formal power series

(4)

∞
∑

n=1

lin(z)γX
n−1 =

(

∞
∑

n=1

lk(z)γX
n−1

)exp(l(z)γX)− 1

l(z)γX
,

which follows from Lemma 0.2.1.
The functions

ti(z)γ : GQ → Zℓ

are defined by the congruence

(5) x−l(z)γ (σ) · fγ(σ) ≡
∞
∏

i=1

(y, x(i−1))ti(z)γ(σ)

modulo commutators with two or more y’s and where

(y, x) := yxy−1x−1 , (y, x(0)) := y and (y, x(i+1)) := ((y, x(i)), x)

for i ≥ 1 (see also [19], where these exponents are studied).

0.3 Measures In this subsection we collect some elementary properties of measures.
Let X be a projective limite of finite sets equipped with the limit topology. Further
we shall call such X a profinite set. We denote by

CO(X)

the set of compact-open subsets of X . A measure µ on X is a bounded finitely
additive function

µ : CO(X)→ Qℓ.

Let X and Y be profinite sets and let φ : X → Y be a continuous map. Let µ
be a measure on X . We define a measure

φ!(µ) : CO(Y )→ Qℓ

on Y by

(φ!µ)(U) := µ(φ−1(U)).

For any f ∈ C(Y,Qℓ) – Qℓ-vector space of continuous functions from Y to Qℓ – we
have

(6)

∫

Y

fd(φ!µ) =

∫

X

(f ◦ φ)dµ.

Let X and Y be profinite sets and let φ : X → Y be a continuous open injective
map. Let ν be a measure on Y . We define a measure

φ!ν : CO(X)→ Qℓ

on X by

(φ!ν)(V) := ν(φ(V)).
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For any f ∈ C(Y,Qℓ) we have

(7)

∫

X

(f ◦ φ)d(φ!ν) =

∫

Y

(χφ(X)f)dν,

where χA is the characteristic function of a subset A.

If φ is a homeomorphism then

φ!ν = (φ−1)!ν.

Let U be a compact-open subset of Y . Let i : U → Y be the inclusion. Then the
measure i!ν we denote also by ν|U . For f ∈ C(Y,Qℓ) we have

∫

U
(f ◦ i)d(ν|U ) =

∫

Y

(χUf)dν.

For the profinite set

X = (Zℓ)
r

we shall review several equivalent definitions of measure.

Definition 0.3.1. A measure µ on (Zℓ)
r is a family of functions

(

µ(n) : (Z/ℓnZ)r → Qℓ

)

n∈N

satisfying the distribution relations and which are uniformly bounded.

Therefore the values of all functions µ(n) are in 1
ℓN Zℓ for some N ≥ 0. For

simplicity we shall assume farther that these values are in Zℓ.
Observe that

(

∑

ι∈(Z/ℓn)r

µ(n)(ι)ι
)

n∈N ∈ lim
←−n

Zℓ[(Z/ℓ
nZ)r] = Zℓ[[(Zℓ)

r]].

Hence we have the following definition.

Definition 0.3.2. A measure µ on (Zℓ)
r is an element

µ ∈ Zℓ[[(Zℓ)
r]].

The Iwasawa algebra Zℓ[[(Zℓ)
r]] is isomorphic to the algebra of commutative

formal power series Zℓ[[A1, A2 . . . Ar]]. The isomorphism of Zℓ-algebras

P : Zℓ[[(Zℓ)
r]]→ Zℓ[[A1, A2 . . . Ar]]

is given by

P
(

(α1, α2 . . . αr)
)

=

r
∏

i=1

(1 +Ai)
αi ,

for (α1, α2 . . . αr) ∈ (Zℓ)
r and is extended by continuity. If µ ∈ Zℓ[[(Zℓ)

r]] then

(8) P (µ)(A1, . . . , Ar) =

∞
∑

n1=0

. . .

∞
∑

nr=0

(

∫

(Zℓ)r
Cx1

n1
Cx2

n2
. . . Cxr

nr
dµ(x1, . . . , xr)

)

An1
1 An2

2 . . . Anr
r .

Let

F : Zℓ[[(Zℓ)
r ]]→ Qℓ[[X1, X2 . . . Xr]]

be given by

F (µ)(X1, . . . , Xr) := P (µ)(exp(X1)− 1, . . . , exp(Xr)− 1) .
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Then we have

(9) F (µ)(X1, . . . , Xr) =

∞
∑

n1=0

. . .
∞
∑

nr=0

1

n1!n2! . . . nr!

(

∫

(Zℓ)r
xn1

1 xn2
2 . . . xnr

r dµ(x1, . . . , xr)
)

Xn1
1 Xn2

2 . . . Xnr
r .

(see also [9, pages 290 and 291])

Let

φ : (Zℓ)
r → (Zℓ)

r

be a morphism of Zℓ-modules. We denote by

φ(n) : (Z/ℓnZ)r → (Z/ℓnZ)r

the induced morphism. The morphisms φ(n) induce morphisms of group rings

(φ(n))∗ : Zℓ[(Z/ℓ
nZ)r ]→ Zℓ[(Z/ℓ

nZ)r]

and in consequence the morphism of the Iwasawa algebras

φ∗ : Zℓ[[(Zℓ)
r]]→ Zℓ[[(Zℓ)

r]] .

Proposition 0.3.3. Let µ be a measure on (Zℓ)
r. Then we have

φ!(µ) = φ∗(µ) .

Proof. The element

φ∗(µ) =
(

(φ(n))∗)(µ)
)

n∈N ∈ lim
←−n

Zℓ[(Z/ℓ
nZ)r] .

We have

(φ(n))∗(µ) = (φ(n))∗(µ
(n)) = (φ(n))∗(

∑

ι∈(Z/ℓnZ)r

µ(n)(ι)ι) =
∑

ι∈(Z/ℓnZ)r

µ(n)(ι)φ(n)(ι)

=
∑

κ∈(Z/ℓnZ)r

(

∑

ι∈(φ(n))−1(κ)

µ(n)(ι)
)

κ .

Let 0 ≤ k1, . . . , kr < ℓn. Therefore we get

(φ∗µ)
(

(k1, . . . , kr) + ℓn(Zℓ)
r
)

=
(

(φ(n))∗)(µ)
)

(k1, . . . , kr) =
∑

ι∈(φ(n))−1(k1,...,kr)

µ(n)(ι) = µ(φ−1
(

(k1, . . . , kr) + ℓn(Zℓ)
r
)

) =

(φ!µ)
(

(k1, . . . , kr) + ℓn(Zℓ)
r
)

.

�

Corollary 0.3.4. Let A = (ai,j) be the matrix of φ : (Zℓ)
r → (Zℓ)

r. Then we have

P (φ!µ)(A1, . . . , Ar) = P (µ)
(

r
∏

i=1

(1 +Ai)
ai,1 , . . . ,

r
∏

i=1

(1 +Ai)
ai,r

)

and

F (φ!µ)(X1, . . . , Xr) = F (µ)
(

r
∑

i=1

ai1Xi, . . . ,

r
∑

i=1

airXi

)

.

If q ∈ Zℓ then 〈q〉 is a positive integer such that 0 ≤ 〈q〉 < ℓn and 〈q〉 ≡ q modulo
ℓn.
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Below we give an example of a measure on Zℓ which will frequently appear in
this paper.
Example 0.3.5. Let c ∈ Z×

ℓ . The Bernoulli measure

E1,c =
(

E
(n)
1,c : Z/ℓnZ→ Qℓ

)

n∈N

on Zℓ is defined by

E
(n)
1,c (i) =

i

ℓn
− c
〈c−1i〉

ℓn
+
c− 1

2
for 0 ≤ i < ℓn.

1. Action of the absolut Galois group on fundamental groups

Let V := P1
Q̄ \ ({0,∞}∪µℓn). We recall that ℓ is a fixed prime and that π1(V,

→
01)

is the maximal pro-ℓ quotient of the étale fundamental group of V based at
→
01. We

describe the Galois action on generators of π1(V,
→
01). In contrast with our other

papers ([16], [17]), we are studying the action of GQ, not merely of GQ(µℓn ). First

we recall the construction of generators of π1(V,
→
01).

Picture 2

Let x ∈ π1(V,
→
01), y′k ∈ π1(V,

→
ξkℓn0) and let βk be a path from

→
01 to

→
ξkℓn0 as on

the picture. Let us set
yk := β−1

k · y′k · βk.

Then
x, y0, y1, . . . , yℓn−1

are free generators of π1(V,
→
01).

Theorem 1.1. The Galois group GQ acts on π1(V,
→
01). For any σ ∈ GQ we have

σ(x) = xχ(σ)

and

σ(yk) = ((βk·χ(σ))
−1 · σ(βk))

−1 · (yk·χ(σ))
χ(σ) · ((βk·χ(σ))

−1 · σ(βk))

for k = 0, 1, . . . , ℓn − 1.

Proof. The Galois group GQ permutes the missing points {0,∞} ∪ µℓn . Hence it

follows that GQ acts on π1(V,
→
01). Let z be the standard coordinate on P1. Then

σ · y′k · σ
−1 transforms (1− ξ

−kχ(σ)
ℓn z)

1
ℓm to (1− ξ−k

ℓn z)
1

ℓm , next to ξ1
ℓm(1− ξ−k

ℓn z)
1

ℓm

and finally to ξ
χ(σ)
ℓm (1− ξ

−kχ(σ)
ℓn z)

1
ℓm . Hence it follows that σ(y′k) = (y′kχ(σ))

χ(σ).

We have
σ(yk) = σ(β−1

k · y′k · βk) = σ(β−1
k ) · σ(y′k) · σ(βk) =
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(σ(βk)
−1 · βk·χ(σ)) · (βk·χ(σ))

−1 · σ(y′k) · βk·χ(σ) · ((βk·χ(σ))
−1 · σ(βk)) =

(

(βk·χ(σ))
−1 · σ(βk)

)−1
· (yk·χ(σ))

χ(σ) ·
(

(βk·χ(σ))
−1 · σ(βk)

)

.

�

2. Measures associated to towers of projective lines

In this section we construct measures on (Zℓ)
r, which generalize the measure

constructed in [9]. Next we generalize the principal result of [9] expressing the
ℓ-adic polylogarithms lik(z) as the integrals over Zℓ.

For each n ≥ 0 we set

Vn := P1
Q̄ \ ({0,∞} ∪ µℓn).

Let

fm+n
n : Vm+n → Vn

be given by

fm+n
n (z) = zℓ

m

.

Observe that fm+n
n (

→
01) =

→
01. Hence we get a family of homomorphisms

(10) (fm+n
n )∗ : π1(Vm+n,

→
01)→ π1(Vn,

→
01)

satisfying

(fm+n+p
p )∗ = (fn+p

p )∗ ◦ (f
m+n+p
n+p )∗.

Observe that the Galois group GQ acts on each π1(Vn,
→
01) and that (fm+n

n )∗ are
GQ-maps. We choose generators

xn, yn,0, yn,1, . . . , yn,ℓn−1

of π1(Vn,
→
01) as in Section 1, i.e. xn = x and yn,i = yi in the notation of Section 1.

Then we have

(11) (fm+n
n )∗(xm+n) = (xn)

ℓm and (fm+n
n )∗(ym+n,k) = x−g · yn,k′ · xg,

where k = k′ + gℓn and 0 ≤ k′ < ℓn.
Let us set

Yn := {Xn, Yn,i | 0 ≤ i < ℓn}

and let

Qℓ{{Yn}}

be a Qℓ-algebra of formal power series in non-commuting variables

Xn, Yn,0, Yn,1, . . . , Yn,ℓn−1.

Let

En : π1(Vn,
→
01)→ Qℓ{{Yn}}

be a continuous multiplicative embedding given by

En(xn) := expXn and En(yn,i) := expYn,i for 0 ≤ i < ℓn.

The action of GQ on π1(Vn,
→
01) induces the action of GQ on Qℓ{{Yn}}. The homo-

morphisms (10) induce GQ-morphisms

(fm+n
n )∗ : Qℓ{{Ym+n}} → Qℓ{{Yn}}
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such that
(fm+n

n )∗ ◦ Em+n = En ◦ (f
m+n
n )∗

and
(fm+n+p

p )∗ = (fn+p
p )∗ ◦ (f

m+n+p
n+p )∗.

It follows from (11) that
(12)
(fm+n

n )∗(Xm+n) = ℓmXn and (fm+n
n )∗(Ym+n,k) = exp(−gX) · Yn,k′ · exp(gX),

if k = k′ + gℓn and 0 ≤ k′ < ℓn.

Let α ∈ Zℓ. Then α =
∑∞

i=0 αiℓ
i where 0 ≤ αi < ℓ. We define

α(n) :=
n−1
∑

i=0

αiℓ
i.

Observe that ξαℓn is well defined and (ξαℓm+n)ℓ
m

= ξαℓn . Let g
(n)
α : Vn → Vn be

given by g
(n)
α (z) = ξαℓnz.

Let 0 ≤ q < ℓn. Let sq be a path on Vn from
→
01 to

→
0ξqℓn as on the picture.

Picture 3

We define
(xn)

1
ℓn

α := sα(n) · (xn)
1
ℓn

(α−α(n)).

Observe that
(fm+n

n )∗
(

(xm+n)
1

ℓn+m α) = (xn)
1
ℓn

α.

Notice that (xn)
1
ℓn

(−α) 6= ((xn)
1
ℓn

α)−1.

Lemma 2.0. Let z be a Q-point or a tangential point defined over Q of P1 \
{0, 1,∞}.

A) Let γ be a path on P1
Q̄ \ {0, 1,∞} from

→
01 to z. Then there is a compatible

family of paths

(γn)n∈N ∈ lim
←−

π(Vn; γn(1),
→
01)

such that
i)

γ0 = γ ;

ii) if z is a Q-point then
(

γn(1)
)

n∈N is a compatible family of ℓn-th roots
of z;

iii) if z is a tangential point then
(

γn(1)
)

n∈N is a compatible family of

tangential points, i.e. fm+n
n

(

γn+m(1)
)

= γn(1) for all n and m;
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iv) the compatible family of paths (γn)n∈N is uniquely determined by the
path γ.

B) Let us assume that a compatible family (z
1
ℓn )n∈N of ℓn-th roots of z is given

or that a compatible family of tangential points is given. Then there exists
a compatible family of paths

(γn)n∈N ∈ lim
←−

π(Vn; z
1
ℓn ,

→
01) .

C) Let (z
1
ℓn )n∈N be a given compatible family of ℓn-th roots of z or a given

compatible family of tangential points lying over z. Let γ be a path on

P1
Q̄ \ {0, 1,∞} from

→
01 to z. Then there is α ∈ Zℓ such that a compatible

family of ℓn-th roots of z or a compatible family of tangential points lying
over z determined by the path

δ := γ · xα

by the homotopy lifting property for coverings is the given family (z
1
ℓn )n∈N

of ℓn-th roots of z or the given compatible family of tangential points lying
over z.

Proof. If γ is a path on P1(C) \ {0, 1,∞} then the existence and the uniqueness
of the compatible family (γn)n∈N follows from the uniqueness of the homotopy
lifting property for coverings. If γ is arbitrary then we use the fact that the set

π(P1(C) \ {0, 1,∞}; z,
→
01) is dense in π(P1

Q̄ \ {0, 1,∞}; z,
→
01). The points ii) and iii)

of A are clear.

To show the point B) of the lemma observe that the profinite sets π(Vn; z
1
ℓn ,

→
01)

are compact and the maps

(fn+1
n )∗ : π(Vn+1; z

1

ℓn+1 ,
→
01)→ π(Vn; z

1
ℓn ,

→
01)

are continuous. Therefore the set lim
←−

π(Vn; z
1
ℓn ,

→
01) is not empty. Hence we get a

compatible family of paths. In fact we get infinite many of compatible families.
It rests to show C). Lifting the path γ to the coverings Vn of V0 we get a new

compatible family of ℓn-th roots of z, which we can write in the form

(ξ−α
ℓn z

1
ℓn )n∈N

for some α ∈ Zℓ. Then lifting the path δ := γ · xα to the covering Vn we get the
given family (z

1
ℓn )n∈N. �

Let z be a Q-point or a tangential point defined over Q of P1 \ {0, 1,∞}. Let γ

be a path from
→
01 to z. Let

(γn)n∈N ∈ lim
←−

π(Vn; z
1
ℓn ,

→
01)

be a compatible family of paths such that γ0 = γ.
We take the Kummer character κ(z) equal l(z)γ0 . For σ ∈ GQ, the Kummer

character evaluated at σ, κ(z)(σ) ∈ Zℓ. Let us set

γn,σ :=
(

g
(n)
κ(z)(σ)(γn)

)

· (xn)
1
ℓn

κ(z)(σ).

Then γn,σ is a path from
→
01 to ξ

κ(z)(σ)
ℓn z

1
ℓn . For each n we have

(fn+1
n )∗(γn+1,σ) = γn,σ.
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Hence it follows that

(γn,σ)n∈N ∈ lim
←−

π(Vn; ξ
κ(z)(σ)
ℓn z

1
ℓn ,

→
01).

Definition 2.1. Let σ ∈ GQ. Let us set

dγn
(σ) := γ−1

n,σ · σ(γn) ∈ π1(Vn,
→
01)

and
∆γn

(σ) := En(γ
−1
n,σ · σ(γn)) ∈ Q{{Yn}}.

For n = 0 we get

∆γ0(σ) = exp(−κ(z)(σ)X0) · E0(γ
−1
0 · σ(γ0)) = exp(−κ(z)(σ)X0) · Λγ0(σ).

Observe that

(13) (fm+n
n )∗(∆γm+n

(σ)) = ∆γn
(σ).

We denote by
Mn

the set of all monomials in non-commuting variables belonging to Yn.

Definition 2.2. Let z be a Q-point of P1 \ {0, 1,∞} or a tangential point defined

over Q. Let γ be a path from
→
01 to z on V0. Let (γn)n∈N ∈ lim

←−
π(Vn; z

1
ℓn ,

→
01) be

such that γ0 = γ. The functions

λnw(z) and linw(z)

on GQ are defined by the following equalities

∆γn
(σ) = 1 +

∑

w∈Mn

λnw(z)(σ) · w

and
log∆γn

(σ) =
∑

w∈Mn

linw(z)(σ) · w.

For integers 0 ≤ i1, i2, . . . , ir < ℓn we set

w(i1, i2, . . . , ir) = Yn,i1Yn,i2 . . . Yn,ir .

Proposition 2.3. Let r > 0. The functions

K(n)
r (z)(σ) : (Z/ℓn)r → Qℓ

(resp. G(n)
r (z)(σ) : (Z/ℓn)r → Qℓ )

defined by the formula

K(n)
r (z)(σ)(i1, i2, . . . , ir) := linw(i1,i2,...,ir)(z)(σ)

(resp. G(n)
r (z)(σ)(i1, i2, . . . , ir) := λnw(i1,i2,...,ir)(z)(σ) ),

where 0 ≤ i1, i2, . . . , ir < ℓn define a measure

Kr(z)(σ) =
(

K(n)
r (z)(σ)

)

n∈N

(resp. Gr(z)(σ) =
(

G(n)
r (z)(σ)

)

n∈N )

on (Zℓ)
r with values in Qℓ.
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Proof. It follows from the formulae (12) and (13) that Kr(z)(σ) and Gr(z)(σ) are
distributions on (Zℓ)

r. Both distributions are bounded because we are in the fixed
degree r and therefore the denominators cannot be worse than (r!)r . �

We denote by

dr

the smallest positive integer such that the measures Kr(z)(σ) and Gr(z)(σ) have
values in ℓ−drZℓ.

Below we point out some elementary properties of the measures Kr(z)(σ). To
simplify the notation we shall omit σ and write Kr(z), l(z), lik(z), . . . instead of
Kr(z)(σ), l(z)(σ), lik(z)(σ), . . . unless it is necessary to indicate σ.

Proposition 2.4.

i) We have
∫

Zℓ

dK1(z) = l1(z)γ0 and

∫

(Zℓ)r
dKr(z) = 0 for r > 1.

Let 0 ≤ a1, . . . , ar < ℓn. Then
∫

(a1,...,ar)+ℓn(Zℓ)r
dKr(z) = K(n)

r (z)(a1, . . . , ar) .

ii) The measure ℓdrKr(z) ∈ Zℓ[[(Zℓ)
r]] corresponds to the power series

P (ℓdrKr(z))(A1, . . . , Ar) =

∞
∑

n1=0

. . .

∞
∑

nr=0

(

∫

(Zℓ)r
Cx1

n1
Cx2

n2
. . . Cxr

nr
d(ℓdrKr(z))

)

An1
1 An2

2 . . . Anr
r .

iii) We have
F (Kr(z))(X1, . . . , Xr) =

∞
∑

n1=0

. . .

∞
∑

nr=0

1

n1!n2! . . . nr!

(

∫

(Zℓ)r
xn1

1 xn2
2 . . . xnr

r dKr(z)
)

Xn1
1 Xn2

2 . . . Xnr
r

in Qℓ[[X1, X2 . . .Xr]].

We recall that z is a Q-point of P1 \ {0, 1,∞} or a tangential point defined over

Q. We recall that γ := γ0 is a path on V0 = P1
Q̄ \{0, 1,∞} from

→
01 to z. To simplify

the notation we denote X0 by X and Y0,0 by Y . Accordingly to Definition 2.2 we
have

log∆γ =
∑

w∈M0

li0w(z) · w and ∆γ = 1+
∑

w∈M0

λ0
w(z) · w .

In [9] there are calculated coefficients li0YXn−1(z) of log∆γ . Our next theorem
generalizes the result from [9].

Theorem 2.5. Let z be a Q-point of P1\{0, 1,∞} or a tangential point defined over

Q. Let γ be a path from
→
01 to z on P1

Q̄ \ {0, 1,∞}. Let (γn)n∈N ∈ lim
←−

π(Vn; z
1
ℓn ,

→
01)

be a compatible family of paths such that γ = γ0. Let

w = Xa0Y Xa1Y Xa2Y . . .Xar−1Y Xar .

Then we have

(14) li0w(z) =
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(

r
∏

i=0

ai!
)−1

∫

(Zℓ)r
(−x1)

a0(x1 − x2)
a1(x2 − x3)

a2 . . . (xr−1 − xr)
ar−1xar

r dKr(z)

and

(15) λ0
w(z) =

1

a0!a1! . . . ar!

∫

(Zℓ)r
(−x1)

a0(x1 − x2)
a1 . . . (xr−1 − xr)

ar−1xar
r dGr(z).

Proof. It follows from the formula (13) that for any n we have

(fn
0 )∗(log∆γn

) = log∆γ .

The term

li0w(z)X
a0Y Xa1Y . . .Xar−1Y Xar

is one of the terms of the power series log∆γ . We must see what terms of the
power series log∆γn

(σ), after applying (fn
0 )∗, contribute to the coefficient at w of

the power series log∆γ . Let

w(i1, i2, . . . , ir) = Yn,i1Yn,i2 . . . Yn,ir .

It follows from (12) that the term

linw(i1,i2,...,ir)(z)Yn,i1Yn,i2 . . . Yn,ir

is mapped by (fn
0 )∗ onto

linw(i1,i2...ir)(z)
(

exp(−i1X) · Y · exp(i1X)
)

·
(

exp(−i2X) · Y ·

exp(i2X)
)

. . .
(

exp(−irX) · Y · exp(irX)
)

.

Hence these terms contribute to the coefficient at w of the power series log∆γ by
the expression

(16)
ℓn−1
∑

i1=0

ℓn−1
∑

i2=0

. . .
ℓn−1
∑

ir=0

linw(i1,i2...ir)(z)
(−i1)

a0

a0!

(i1 − i2)
a1

a1!
. . .

(ir−1 − ir)
ar−1

ar−1!

(ir)
ar

ar!
.

There are also terms with Xn which contribute. But we have (fn
0 )∗(Xn) = ℓnX.

Therefore the contribution from terms containing Xn tends to 0 if n tends to ∞.
Observe that if n tends to ∞ then the sum (16) tends to the integral (14). �

The measures Kr(z), Gr(z), the functions li0w(z), λ
0
w(z), li

n
w(z), λ

n
w(z) depend

on the path γ, hence we shall denote them also by Kr(z)γ , Gr(z)γ , li
0
w(z)γ , λ

0
w(z)γ ,

linw(z)γ , λ
n
w(z)γ .

Throughout this paper we are working over Q though without any problems the
base field Q can be replaced by any number field K. Only in Section 5 in the last
two propositions and in Sections 10 and 11 the base field is Q(µm).
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3. Inclusions

In this section and in the next two sections we shall study symmetries of the
measures Kr(z). The symmetries considered are inclusions, rotations and the in-
version. The symmetry relations are special cases of functional equations studied
in [15], [18] and recently in [10] and [11].

The inclusion

ιp+n
n : Vp+n → Vn

induces morphisms of fundamental groups

(ιp+n
n )∗ : π1(Vp+n,

→
01)→ π1(Vn,

→
01)

and maps of torsors of paths

(ιp+n
n )∗ : π(Vp+n; z,

→
01)→ π(Vn; z,

→
01) .

The morphisms (ιp+n
n )∗ of fundamental groups induce morphisms of Qℓ-algebras

(ιp+n
n )∗ : Qℓ{{Yp+n}} → Qℓ{{Yn}} .

All these maps are compatible with the actions of GQ. Observe that

(17) (ιp+n
n )∗(Xp+n) = Xn, (ιp+n

n )∗(Yp+n,i) = 0 if i 6≡ 0 mod ℓp

and (ιp+n
n )∗(Yp+n,ℓpi) = Yn,i.

Let

(γn)n∈N ∈ lim
←−

π(Vn; z
1/ℓn ,

→
01)

and for any σ ∈ GQ, let

(γn,σ)n∈N ∈ lim
←−

π(Vn; ξ
κ(z)(σ)
ℓn z1/ℓn ,

→
01)

be as in Section 2.
Let M be a fixed natural number. It follows from the equality

fn+1
n ◦ ιM+n+1

n+1 = ιM+n
n ◦ fM+n+1

M+n

that the following diagram commutes

π(VM+n+1; (z
1/ℓM )1/ℓ

n+1

,
→
01)

(ιM+n+1
n+1 )∗
−→ π(Vn+1; (z

1/ℓM )1/ℓ
n+1

,
→
01)

(fM+n+1
M+n )∗





y
(fn+1

n )∗




y

π(VM+n; (z
1/ℓM )1/ℓ

n

,
→
01)

(ιM+n
n+1 )∗
−→ π(Vn; (z

1/ℓM )1/ℓ
n

,
→
01)

as well as the analogous diagram of fundamental groups

π1(VM+n+1,
→
01)

(ιM+n+1
n+1 )∗
−→ π1(Vn+1,

→
01)

(fM+n+1
M+n )∗





y
(fn+1

n )∗




y

π1(VM+n,
→
01)

(ιM+n
n+1 )∗
−→ π1(Vn,

→
01).
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Let us set

αn = (ιM+n
n )∗(γM+n) and αn,σ = (ιM+n

n )∗(γM+n,σ).

Observe that α0 (resp. α0,σ) is a path on V0 = PQ̄ \ {0, 1,∞} from
→
01 to z1/ℓM

(resp. to ξ
κ(z)(σ)

ℓM
z1/ℓM ).

We define

dαn
(σ) = α−1

n,σ · σ(αn) ∈ π1(Vn,
→
01)

and
∆αn

(σ) = En

(

α−1
n,σ · σ(αn)

)

∈ Qℓ{{Yn}}.

One shows that
(fm+n

n )∗(∆αm+n
(σ)) = ∆αn

(σ).

We define functions
linw(z

1/ℓM ) and λnw(z
1/ℓM )

on GQ by the equalities

log∆αn
(σ) =

∑

w∈Mn

linw(z
1/ℓM ) · w and ∆αn

(σ) = 1 +
∑

w∈Mn

λnw(z
1/ℓM ) · w.

If z =
→
01 then z1/ℓM we replace by 1

ℓM

→
10.

Then as in Section 2 we get measures

Kr(z
1/ℓM ) and Gr(z

1/ℓM ) on (Zℓ)
r.

The analogue of Theorem 2.5 holds for the power series ∆α0(σ) and log∆α0(σ).

Theorem 3.1. Let z be a Q-point of P1 \ {0, 1,∞} or a tangential point defined
over Q. Let w = Xa0Y Xa1Y Xa2Y . . .Xar−1Y Xar . Then we have

(18) li0w(z
1/ℓM ) =

1

a0!a1! . . . ar!

∫

(Zℓ)r
(−x1)

a0(x1 − x2)
a1 . . . (xr−1 − xr)

ar−1xar
r dKr(z

1/ℓM )

and

(19) λ0
w(z

1/ℓM ) =

1

a0!a1! . . . ar!

∫

(Zℓ)r
(−x1)

a0(x1 − x2)
a1 . . . (xr−1 − xr)

ar−1xar
r dGr(z

1/ℓM ).

The next result shows the relation between measures Kr(z) and Kr(z
1/ℓM ).

Proposition 3.2. Let z be a Q-point of P1 \ {0, 1,∞}. Then we have

K(M+n)
r (z)(ℓM i1, ℓ

M i2, . . . , ℓ
M ir) = K(n)

r (z
1

ℓM )(i1, i2, . . . , ir)

and
G(M+n)

r (z)(ℓM i1, ℓ
M i2, . . . , ℓ

M ir) = G(n)
r (z

1

ℓM )(i1, i2, . . . , ir).

For z =
→
10 we have

K(M+n)
r (

→
10)(ℓM i1, ℓ

M i2, . . . , ℓ
M ir) = K(n)

r (
1

ℓM

→
10)(i1, i2, . . . , ir) .

If 0 < i1, i2, . . . , ir < ℓn then

K(n)
r (

1

ℓM
→
10)(i1, i2, . . . , ir) = K(n)

r (
→
10)(i1, i2, . . . , ir) .
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Proof. From the very definition of paths αn and αn,σ we get that for each n

(ιM+n
n )∗(log∆γM+n

) = log∆αn
.

Comparing coefficients on both sides of the equality and using the equalities (17) we
get the first two equalities of the proposition as well as the first equality involving
→
10. The last equality follows from the fact that the path from

→
10 to 1

ℓM

→
10 is in an

infinitesimal neighbourhood of 1. �

4. Inversion

We start with the special case of the measure K1(
→
10). Let pn be the standard

path from
→
01 to 1

ℓn

→
10 on Vn. Let

h : Vn → Vn

be defined by

h(z) = 1/z.

Let qn := h(pn)
−1, let sn be a path from 1

ℓn

→
10 to 1

ℓn

→
1∞ as on the picture and let

Γn := qn · sn · pn.

Picture 4

For σ ∈ GQ, let us define coefficients ai(σ) by the congruence

logΛpn
(σ) ≡

ℓn−1
∑

i=0

ai(σ)Yn,i mod Γ2L(Yn).

It follows from [14] that

fΓn
=

(

p−1
n · s

−1
n · q

−1
n · (h∗fpn

)−1 · qn · sn · pn
)

· (p−1
n · fsn · pn) · fpn

.

Hence we get

logΛΓn
= −log(h∗Λpn

) + logΛsn + logΛpn
mod Γ2L(Yn) .

Observe that

logΛsn =
χ− 1

2
Yn,0

and

−logh∗Λpn
≡ −

ℓn−1
∑

i=1

aiYℓn−i mod Γ2L(Yn) .

Hence it follows that

(20) logΛΓn
≡
χ− 1

2
Yn,0 +

ℓn−1
∑

i=1

(ai − aℓn−i)Yn,i mod Γ2L(Yn).

We recall that for α ∈ Qℓ and k ∈ N we denote by Cα
k the binomial coefficients.
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Lemma 4.1. For 0 < i < ℓn we have

ai(σ) − aℓn−i(σ) =
( i

ℓn
−

1

2

)

−
(

χ(σ)
〈iχ(σ)−1〉

ℓn
− χ(σ)

1

2

)

= E
(n)
1,χ(σ)(i) .

Proof. Let z be the standard local parameter at 0 corresponding to
→
01. Then

u = 1/z is the local parameter at ∞ correspoding to
→
∞1. Notice that

fΓn
≡

ℓn−1
∏

i=0

ycin,i mod Γ2π1(Vn,
→
01).

To calculate the coefficients ci we shall act on

(1− ξ−i
ℓn z)

1/ℓm =

∞
∑

k=0

C
1/ℓn

k (−ξ−i
ℓn z)

k

by the path fΓn
(σ) = Γ−1

n · σ · Γn · σ
−1. We have

(1− ξ−i
ℓn z)

1
ℓm

σ−1

−→(1 − ξ
−iχ(σ−1)
ℓn z)

1
ℓm

Γn−→

(
1

z
)−1/ℓm(

1

z
− ξ

−iχ(σ−1)
ℓn )

1
ℓm = u−1/ℓm(−ξ

−iχ(σ−1)
ℓn )

1
ℓm (1− ξ

iχ(σ−1)
ℓn u)

1
ℓm

σ
−→

σ
(

(−ξ
−iχ(σ−1)
ℓn )1/ℓ

m)

u−1/ℓm(1− ξiℓnu)
1/ℓm Γ−1

n−→

σ
(

(−ξ
−iχ(σ−1)
ℓn )1/ℓ

m)

(−ξiℓn)
1/ℓm(1− ξ−i

ℓn z)
1/ℓm .

To fix the value of

(21) σ
(

(−ξ
−iχ(σ−1)
ℓn )1/ℓ

m)

(−ξiℓn)
1/ℓm

we need to prolongate by analytic continuation (1−ξ−i
ℓn z)

1/ℓmalong Γn and compare

with u−1/ℓm(1 − ξiℓnu)
1/ℓm .

We parametrize (a part of) the path sn by

[0, π] ∋ φ 7−→ 1 + ǫe
√
−1(π+φ) .

We get that (1− (1 + ǫe
√
−1(π+φ)))1/ℓ

m

tends to e
√−1π
ℓm

(

1
1+ǫ

)−1/ℓm(

1− 1
1+ǫ

)1/ℓm

if
φ tends to π. Therefore

(

e
√−1π
ℓm

)−1
(1− z)1/ℓ

m

= u−1/ℓm(1 − u)1/ℓ
m

.

Hence it follows that

ci =
( i

ℓn
−

1

2

)

−
(

χ(σ)
〈iχ(σ)−1〉

ℓn
− χ(σ)

1

2

)

.

�

Because of the importance of the lemma we gave a second proof.
Second proof. Let 0 ≤ i < ℓ. Let

Φi : (Vn,
→
01)→ (V0,

−−→
0ξ−i

ℓn )

be given by

Φi(z) = ξ−i
ℓn z .
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Then we have

(22) (Φi)∗(p
−1
n · σ(pn)) ≡ (Φi)∗(yi)

ai(σ) mod Γ2π1(V0,
−−→
0ξ−i

ℓn ).

Let ti ∈ π(V0;
−−→
0ξ−i

ℓn ,
→
01) be as on the picture.

Picture 5

Observe that

(23) t−1
i · (Φi)∗(x) · ti = x, t−1

i · (Φi)∗(yi) · ti = y

in π1(V0,
→
01). For any σ ∈ GQ and any 0 ≤ i < ℓn we have

(Φi)∗ ◦ σ = σ ◦ (Φ〈iχ(σ−1)〉)∗ .

Hence we get

(Φi)∗(p
−1
n · σ(pn)) = (Φi)∗(p

−1
n ) · σ(Φ〈iχ(σ−1)〉(pn)) .

To simplify the notation let us set

qi := (Φi)∗(pn) /; end Qi := qi · ti .

Then it follows from (22) and (23) that

(24) Q−1
i ·σ(Q〈iχ(σ−1)〉) = t−1

i ·q
−1
i ·σ(q〈iχ(σ−1)〉)·ti·t

−1
i σ(t〈iχ(σ−1)〉) ≡ y

ai(σ)·xri(σ)

modulo Γ2π1(V,
→
01)

for some ri(σ) ∈ Zℓ.

Let z be the standard local parameter at 0 corresponding to
→
01. Then t =

ξ
iχ(σ−1)
ℓn z is a local parameter at 0 corresponding to

−−−−−−−→
0ξ

−iχ(σ−1)
ℓn and t1 = ξiℓnz is a

local parameter at 0 corresponding to
−−→
0ξ−i

ℓn . We calculate the action of t−1
i · σ ·

t〈iχ(σ−1)〉 · σ
−1 on z1/ℓ

m

. We have

z1/ℓ
m σ−1

−→ z1/ℓ
m t〈iχ(σ−1)〉
−→

(

ξ
iχ(σ−1)
ℓn

)−1/ℓm

t1/ℓ
m

σ
−→ σ

((

ξ
iχ(σ−1)
ℓn

)−1/ℓm)

t
1/ℓm

1

t−1
i−→ σ

((

ξ
iχ(σ−1)
ℓn

)−1/ℓm)

(ξiℓn)
1/ℓmz1/ℓ

m

.

Observe that t
1/ℓm

1 (resp. t1/ℓ
m

) is real positive on ε · ξ−i
ℓn (resp. on ε · ξ

−iχ(σ−1)
ℓn )

for ε > 0. This fixes values (ξiℓn)
1/ℓm (resp. (ξ

iχ(σ−1)
ℓn

)−1/ℓm

) for 0 < i < ℓn which

are ξiℓn+m (resp. ξ
−iχ(σ−1)

ℓn+m ).
Hence we get that

ri(σ) =
i

ℓn
− χ(σ)

〈iχ(σ)−1〉

ℓn
.

Let h : V0 → V0 be defined by
h(z) = 1/z.
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The path Γ0 on V0 we denote by Γ. Observe that

(25) Γ−1 · h∗(x) · Γ = y−1 · x−1, Γ−1 · h∗(y) · Γ = y

and

(26) (h(Qi) · Γ)
−1 ·Q−i = y−1 · x−1 .

It follows from (24) and (25) that

Γ−1 · h(Qi)
−1 · h(σ(Q〈iχ(σ−1)〉)) · Γ ≡ y

ai(σ) · (y−1 · x−1)ri(σ) mod Γ2π1(V0,
→
01).

On the other side it follows from (26) and (24) that

Γ−1 · h(Qi)
−1 · h(σ(Q〈iχ(σ−1)〉)) · Γ =

(h(Qi) · Γ)
−1 ·Q−i · (Q−i)

−1 · σ(Q〈−iχ(σ−1)〉) · σ(x) · σ(y) · (Γ
−1 · σ(Γ))−1 ≡

y−1 · x−1 · ya−i(σ) · xr−i(σ) · xχ(σ) · yχ(σ) · y−
1
2 (χ(σ)−1) mod Γ2π1(V0,

→
01).

Hence comparing the right hand sides of both congruences we get

ai(σ)− ri(σ) = a−i(σ) +
1

2
(χ(σ) − 1) .

Therefore we have

ai(σ)− a−i(σ) = ri(σ) +
1

2
(χ(σ) − 1) = E1,χ(σ)(i) .

�

In [10] there is still another proof of Lemma 4.1. In the second part of the paper
we shall consider general case.

5. Measures K1(z)

In this section we present some elementary properties of measures K1(z). Most
of these properties are already well known and we just collect them.

If µ is a measure on Zℓ we denote by µ× the restriction of µ to Z×
ℓ , i.e.

µ× = i!µ,

where i : Z×
ℓ →֒ Zℓ is the inclusion.

We define
m(n) : Zℓ → Zℓ

by the formula m(n)(x) = ℓnx.

Proposition 5.1. Let z be a Q-point of P1 \ {0, 1,∞}. Let γ be a path from
→
01

to z. The measure K1(z) associated with the path γ from
→
01 to z has the following

properties:

i)

F (K1(z))(X) =

∞
∑

k=0

lik+1(z)γ ·X
k ;

ii)

P (K1(z))(A) =
∞
∑

k=0

tk+1(z)γ ·A
k ;
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iii)

m(n)!K1(z) = K1(z
1
ℓn ) ;

iv)
∫

ℓnZℓ

dK1(z) = l(1− z1/ℓn)α0 ;

v)
∫

Zℓ

xmdK1(z) =

∞
∑

k=0

ℓkm
∫

Z×
ℓ

xmdK1(z
1/ℓk)× for m ≥ 1 .

Proof. It follows from (9) that

F (K1(z))(X) =

∞
∑

k=0

1

k!

(

∫

Zℓ

xndK1(z)
)

Xk .

Observe that

lik+1(z)γ = li0YXk(z)γ .

Hence it follows from Theorem 2.5 that

lik+1(z)γ =
1

k!

∫

Zℓ

xkdK1(z) for k ≥ 0 .

Therefore we get the formula i) of the proposition.
We recall that the functions tn(z)γ are defined by the congruences (5). We

embed the group π1(P
1
Q̄ \ {0, 1,∞},

→
01) into Zℓ{{A,B}}

× sending x to 1+A and y

to 1 +B. Then the image of x−l(z)γ · fγ is the formal power series

1 +

∞
∑

k=0

tk+1(z)γB ·A
k + . . . ,

where we have written only terms with exactly one B and which start with B.
Substituting expX for 1 +A and expY for 1 +B we get the formal power series

(27) (exp(−l(z)γX) · Λγ(X,Y )) = 1 +

∞
∑

k=0

lik+1(z)γY X
k + . . . ,

because taking the logarithm of this power series does not change terms of degree
1 with respect to Y . Observe that the terms on the right hand side of the formula
(27), which start with Y and of degree 1 in Y can be written Y ·F (K1(z))(X). By
the very definition we have

F (K1(z))(X) = P (K1(z))(expX − 1) .

Hence it follows that

P (K1(z))(A) =
∞
∑

k=0

tk+1(z)γ ·A
k .

Let 0 ≤ i < ℓM . Then we have K1(z
1/ℓn)(i + ℓMZℓ) = K

(M)
1 (z1/ℓn)(i) =

K
(M+n)
1 (z)(ℓni) by Proposition 3.2. Calculating farther we get K

(M+n)
1 (z)(ℓni) =

K1(z)(ℓ
ni + ℓM+nZℓ) = K1(z)(m(n)(i + ℓMZℓ)) = m(n)!K1(z)(i + ℓMZℓ). Hence

we have shown the point iii).
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To show the point iv) observe that Proposition 3.2 implies
∫

ℓnZℓ

dK1(z) = K
(n)
1 (z)(0) = K

(0)
1 (z1/ℓn)(0) .

Notice that K
(0)
1 (z1/ℓn)(0) is the coefficient at Y of the element ∆α0 , hence it is

equal li
(0)
Y (z1/ℓn) = l(1 − z1/ℓn)α0 . (We recall that α0 is γn considered on P1

Q̄ \

{0, 1,∞}.)
To prove the point v) we present Zℓ as the following finite disjoint union of

compact-open subsets

Zℓ = Z×
ℓ ∪ ℓZ

×
ℓ ∪ . . . ∪ ℓ

n−1Z×
ℓ ∪ ℓ

nZℓ .

Observe that
∫

ℓkZ×
ℓ

xmdK1(z) =

∫

Z×
ℓ

(ℓkx)md(m(k)!K1(z))

by the formula (7). It follows from the point iii) already proved that
∫

Z×
ℓ

(ℓkx)md(m(k)!K1(z)) = ℓkm
∫

Z×
ℓ

xmdK1(z
1/ℓk) .

Hence we get that

∫

Zℓ

xmdK1(z) =

n−1
∑

k=0

ℓkm
∫

Z×
ℓ

xmdK1(z
1/ℓk) + ℓnm

∫

Zℓ

xmdK1(z
1/ℓn) .

Observe that the term ℓnm
∫

Zℓ
xmdK1(z

1/ℓn) tends to 0 if n tends to ∞. Hence we

have
∫

Zℓ

xmdK1(z) =

∞
∑

k=0

ℓkm
∫

Z×
ℓ

xmdK1(z
1/ℓk) .

�

In the next proposition we indicate properties of the measure K1(
→
10).

Proposition 5.2. Let p be the standard path on P1
Q̄ \ {0, 1,∞} from

→
01 to

→
10. Let

K1(
→
10) be the measure associated with the path p. We have

i)
(

m(n)!K1(
→
10)

)×
= K1(

→
10)× ;

ii)
∫

Zℓ

dK1(
→
10) = 0 and

∫

ℓnZℓ

dK1(
→
10) = κ(

1

ℓn
) for n > 0 ;

iii)
∫

Zℓ

xkdK1(
→
10) =

1

1− ℓk

∫

Z×
ℓ

xkdK1(
→
10) .

Proof. The lifting of the path p = p0 to Vn is the path pn from
→
01 to 1

ℓn

→
10. We

have
(

m(n)!K1(
→
10)

)

(i+ ℓMZℓ) = K1(
→
10)(ℓni+ ℓM+nZℓ) = K

(M+n)
1 (

→
10)(ℓni) .
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Observe that K
(M+n)
1 (

→
10)(ℓni) is the coefficient of logΛpM+n

at YM+n,ℓni. Assume
that ℓ does not divide i. Then this coefficient is equal to the coefficient of logΛpM

at

YM,i, which is K
(M)
1 (

→
10)(i) = K1(

→
10)(i + ℓMZℓ). Therefore

(

m(n)!K1(
→
10)

)

(i+ ℓMZℓ) = K1(
→
10)(i+ ℓMZℓ)

for i not divisible by ℓ. This implies the point i).

The formal power series Λp = ∆p has no terms in degree one, hence
∫

Zℓ
dK1(

→
10) =

l1(
→
10)p = 0. We have

∫

ℓnZℓ

dK1(
→
10) = K1(

→
10)(ℓnZℓ) = K

(n)
1 (0) .

Observe that K
(n)
1 (0) is the coefficient of Λpn

= ∆pn
at Yn,0. Let t be the local

parametre on Vn at 0 corresponding to
→
01. The element fpn

(σ) = p−1
n · σ · pn · σ

−1

acts on (1− t)
1

ℓm as follows:

(1− t)
1

ℓm
σ−1

−→(1− t)
1

ℓm
pn
−→(

1

ℓn
)

1
ℓm s

1
ℓm

σ
−→

σ
(

(
1

ℓn
)

1
ℓm

)

s
1

ℓm
p−1
n−→σ

(

(
1

ℓn
)

1
ℓm

)(

(
1

ℓn
)

1
ℓm

)

(1− t)
1

ℓm = ξ
κ(1/ℓn)
ℓm (1− t)

1
ℓm ,

where s = ℓn(1− t) is the local parametre on Vn at 1 corresponding to 1
ℓn

→
10. Hence

we get that

K
(n)
1 (

→
10)(0) = κ(

1

ℓn
)

and therefore
∫

ℓnZℓ
dK1(

→
10) = κ( 1

ℓn ).

Repeating the arguments from the proof of the point v) of Proposition 5.1 we
get

∫

Zℓ

xmdK1(
→
10) =

∞
∑

k=0

ℓmk

∫

Z×
ℓ

xmdK1(
1

ℓk
→
10) =

∞
∑

k=0

ℓmk

∫

Z×
ℓ

xmdK1(
→
10) ,

because the measures K1(
1
ℓk

→
10) and K1(

→
10) coincide on Z×

ℓ . But the last series is

equal 1
1−ℓm

∫

Z×
ℓ

xmdK1(
→
10). �

In the next two propositions our base field is Q(µm).

Proposition 5.3. Let m be a positive integer not divisible by ℓ. Let ξm be a

primitive m-th root of 1. Let
(

ξℓ
−n

m

)

n∈N be a compatible family of ℓn-th roots of

ξm such that ξℓ
−n

m ∈ µm for all n ∈ N. Let a be the order of ℓ modulo m. Let

(γn)n∈N ∈ lim
←−

π(Vn; ξ
ℓ−n

m ,
→
01)

and let K1(ξm) be the measure associated with the path γ0. Then we have:

i)

∫

Zℓ

xkdK1(ξm) =
a−1
∑

i=0

ℓki

1− ℓka

∫

Z×
ℓ

xkdK1(ξ
ℓ−i

m )× for k ≥ 1 ,
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ii)

lk(ξ
ℓ−i

m )γi
= lik(ξ

ℓ−i

m )γi
for 0 ≤ i < a ,

iii) the functions

lk(ξ
ℓ−i

m )γi
: GQ(µm) → Zℓ(k)

are cocycles for all k and 0 ≤ i < a.

Proof. Observe that
∫

Zℓ

xkdK1(ξm) =

∞
∑

n=0

∫

ℓnZ×
ℓ

xkdK1(ξm) =

∞
∑

n=0

ℓnk
∫

Z×
ℓ

xkdK1(ξ
ℓ−n

m )× =

a−1
∑

i=0

(

∞
∑

n=0

ℓ(i+a·n)k

∫

Z×
ℓ

xkdK1(ξ
ℓ−i

m )×
)

=

a−1
∑

i=0

ℓki

1− ℓka

∫

Z×
ℓ

xkdK1(ξ
ℓ−i

m )× .

Hence we have shown the point i) of the proposition.

Let 0 ≤ i < a. Observe that l(ξℓ
−i

m )γi
= 0 because ℓn-th roots of ξℓ

−i

m calculated
along γi are in µm. Hence it follows that Λγi

= ∆γi
and in consequence

lk(ξ
ℓ−i

m )γi
= lik(ξ

ℓ−i

m )γi
.

It follows from [15, Theorem 11.0.9] that lk(ξ
ℓ−i

m )γi
are cocycles. �

The last result of this section concerns distribution relations of ℓ-adic polyloga-
rithms. In [11] we proved the following result (see also [18, Theorem 2.1.]).

Theorem 5.4. Let m be a positive integer not divisible by ℓ. Let z be a Q-point

of P1 \ {0, 1,∞}. There are ℓ-adic paths γk on P1
Q̄ \ {0, 1,∞} from

→
01 to ξkm for

k = 0, 1, . . . ,m− 1 and an ℓ-adic path γ from
→
01 to zm such that

mn−1
(

m−1
∑

k=0

lin(ξ
k
mz)γk

)

= lin(z
m)γ

on the group GQ(µm) for all n ≥ 1.

The next result follows immediately from Theorem 2.5 and the theorem stated
above.

Proposition 5.5. We have the following equality of the formal power series in
Q[[X ]]

m−1
∑

k=0

F (K1(ξ
k
mz)γk

)(mX) = F (K1(z
m)γ)(X) .

6. Congruences between coefficients

Let w = Xa0Y Xa1Y . . . Y Xar . In Section 2 we have shown that

(28) li0w(z) =

1

a0!a1! . . . ar!

∫

(Zℓ)r
(−x1)

a0(x1 − x2)
a1 . . . (xr−1 − xr)

ar−1xar
r dKr(z).
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Let F : (Zℓ)
r → (Zℓ)

r be given by F (x1, . . . , xr) = (x1 − x2, . . . , xr−1 − xr, xr).
Observe that F is an isomorphism of Zℓ-modules. It follows from the formula (6)
that

(29)

∫

(Zℓ)r
(−x1)

a0(x1 − x2)
a1(x2 − x3)

a2 . . . (xr−1 − xr)
ar−1xar

r dKr(z) =

∫

(Zℓ)r
(−

r
∑

i=1

ti)
a0(t1)

a1(t2)
a2 . . . (tr−1)

ar−1tar
r d(F!Kr(z)).

To simplify the notation we denote

K̄r(z) = F!Kr(z).

Let us decompose (Zℓ)
r into a disjoint union of compact subsets

(Zℓ)
r =

∞̄
⊔

n1=0

. . .

∞̄
⊔

nr=0

(

r
∏

i=1

ℓniZ×
ℓ

)

,

where bar over∞means that the summation includes∞ and ℓ∞Z×
ℓ = {0}. Observe

that the subsets
r
∏

i=1

ℓniZ×
ℓ

for n1 6=∞, n2 6=∞,. . . ,nr 6=∞ are compact-open subsets of (Zℓ)
r.

Let n1 6=∞, n2 6=∞,. . . ,nr 6=∞. Let

m(n1, . . . , nr) : (Z
×
ℓ )

r → (Zℓ)
r

be given by

m(n1, . . . , nr)(t1, . . . , tr) = (ℓn1t1, . . . , ℓ
nr tr).

Lemma 6.1. We have

(30)

∫

∏
r
i=1 ℓniZ×

ℓ

(−

r
∑

i=1

ti)
a0(t1)

a1(t2)
a2 . . . (tr−1)

ar−1(tr)
ardK̄r(z) =

ℓ
∑r

i=1 aini

∫

(Z×
ℓ

)r
(−

r
∑

i=1

ℓniti)
a0(t1)

a1(t2)
a2 . . . (tr)

ard
(

m(n1, . . . , nr)
!K̄r(z)

)

.

Proof. The lemma follows from the formula (7). �

Lemma 6.2. Let us assume that ai are positive integers for i = 1, 2, . . . , r. Then
we have

(31)

∫

(Zℓ)r
(−

r
∑

i=1

ti)
a0(t1)

a1(t2)
a2 . . . (tr−1)

ar−1(tr)
ardK̄r(z) =

∞
∑

n1=0

. . .

∞
∑

nr=0

ℓ
∑r

i=1 aini

∫

(Z×
ℓ

)r
(−

r
∑

i=1

ℓniti)
a0(t1)

a1(t2)
a2 . . . (tr−1)

ar−1(tr)
ard

(

K
)

.

where K = m(n1, . . . , nr)
!K̄r(z).

Proof. Observe that for any natural number M the set

{(n1, n2, . . . , nr) ∈ Nr |

r
∑

i=1

niai < M}
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is finite. This implies that the series on the right hand side of (31) converges.
For a given M we have the following decomposition into a finite disjoint union of
compact-open subsets

(Zℓ)
r = (

M
⊔

n1=0

. . .

M
⊔

nr=0

(

r
∏

i=1

ℓniZ×
ℓ

)

)
⊔

(

ℓM+1Zℓ

)r
.

Observe that
∫

(ℓM+1Zℓ)r
(−

r
∑

i=1

ti)
a0(t1)

a1(t2)
a2 . . . (tr)

ardK̄r(z) ≡ 0 mod ℓM+1−dr .

Hence it follows from (30) that the series on the right hand side of the equality (31)
converges to the integral on the left hand side of the equality (31). �

Now we shall prove congruence relations between coefficients of the power series

log∆γ =
∑

w∈M0

li0w(z) · w ∈ Qℓ{{X,Y }}.

Theorem 6.3. Let ai and bi be non negative integers not divisible by ℓ for
i = 1, 2, . . . , r. Let w = Y Xa1Y Xa2 . . . Y Xar and v = Y Xb1Y Xb2 . . . Y Xbr . LetM
be a positive integer. Let us assume that ai ≡ bi modulo (ℓ−1)ℓM for i = 1, 2, . . . , r.

Let z be a Q-point of P1 \ {0, 1,∞} or z =
→
10. Let γ be a path from

→
01 to z. Then

for any σ ∈ GQ we have the following congruences between coefficients of the power

series log∆γ (logΛp if z =
→
10)

(

r
∏

i=1

ai!)li
0
w(z)(σ) ≡ (

r
∏

i=1

bi!)li
0
v(z)(σ) modulo ℓM+1−dr .

Proof. One can find ci ∈ Z such that

bi = ai + ci(ℓ− 1)ℓM

for i = 1, 2, . . . , r. Then for any x ∈ Z×
ℓ we have

xbi = xai · x(ℓ−1)ciℓ
M

= xaiyℓ
M

,

where y = x(ℓ−1)ci ∈ 1 + ℓZℓ. It implies that

xbi ≡ xai modulo ℓM+1

for i = 1, 2, . . . , r. Hence it follows that
∫

(Z×
ℓ

)r
ta1
1 t

a2
2 . . . tar

r d(m(n1, . . . , nr)
!K̄r(z)(σ)) ≡

∫

(Z×
ℓ

)r
tb11 t

b2
2 . . . tbrr d(m(n1, . . . , nr)

!K̄r(z)(σ)) modulo ℓM+1−dr .

Lemma 6.2 implies that
∫

(Zℓ)r
ta1
1 ta2

2 . . . tar
r dK̄r(z)(σ) ≡

∫

(Zℓ)r
tb11 t

b2
2 . . . tbrr dK̄r(z)(σ) modulo ℓM+1−dr .

Therefore the theorem follows from the equality (29) and Theorem 2.5. �
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7. ℓ-adic poly–multi–zeta functions?

In this section we attempt to define non-Archimedean analogues of multi–zeta
functions

ζ(s1, . . . , sr) =
∑

n1>n2>...>nr=1

1

ns1
1 n

s2
2 . . . nsr

r

and poly–multi–zeta functions

ζz(s1, . . . , sr) =
∑

n1>n2>...>nr=1

zn1

ns1
1 n

s2
2 . . . nsr

r
.

Let

ω : Z×
ℓ → Z×

ℓ

be the Teichmuller character. If x ∈ Z×
ℓ we set

[x] := x · ω(x)−1 .

Definition 7.1. Let 0 ≤ βi < ℓ − 1 for i = 1, . . . , r. Let β̄ := (β1, . . . , βr),
let n̄ := (n1, . . . , nr) ∈ Nr and let (s1, . . . , sr) ∈ (Zℓ)

r. Let z be a Q-point of
P1 \ {0, 1,∞} or a tangential point defined over Q. We define

Z β̄
n̄ (1− s1, . . . , 1− sr; z, σ) :=

∫

(Z×
ℓ

)r
[t1]

s1t−1ω(t1)
β1 . . . [tr]

s1t−1ω(tr)
βrd(m(n1, . . . , nr)

!K̄r(z)(σ) .

For z =
→
10 we should obtain ℓ-adic non-Archimedean analogues of multi-zeta

functions. However before we should divide by polynomials in [χ(σ)]s in order
to get functions which do not depend on σ. We do not know how to do this for
arbitrary r. Only for r = 1 we can guess easily the required polynomial. The case
r = 1 is studied in the next section.

8. ℓ-adic L-functions of Kubota-Leopoldt

Now we shall consider the only case when we can show the expected relations
of the functions constructed by us in Section 7 with the corresponding ℓ-adic non-
Archimedean functions.

We shall consider the case of r = 1 and z =
→
10. We shall show that in this case

the functions Zβ
0 (1− s;

→
10, σ) defined in Section 7 are in fact the Kubota-Leopoldt

L-functions multiplied by the function

s 7−→ ω(χ(σ))β [χ(σ)]s − 1 .

We start by gathering the facts we shall need and which are crucial in identifi-

cation of Zβ
0 (1 − s;

→
10, σ) with the Kubota-Leopoldt L-functions. It follows from

Theorem 2.5 and the definition of ℓ-adic Galois polylogarithms in [15] that

(32) lk(
→
10) =

1

(k − 1)!

∫

Zℓ

xk−1dK1(
→
10) .
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It follows from Proposition 5.2, point iii) that

(33)

∫

Zℓ

xk−1dK1(
→
10) =

1

1− ℓk−1

∫

Z×
ℓ

xk−1dK1(
→
10)

for k > 1. For k > 0 and even we have the equality

(34) lk(
→
10) =

−Bk

2 · k!
(χk − 1)

(see [20, Proposition 3.1], another proof is in [10]).

In Section 7 we defined

Zβ
0 (1− s;

→
10, σ) =

∫

Z×
ℓ

[x]sx−1ω(x)βdK1(
→
10)(σ) .

We shall use a modified version of the function.

Definition 8.1. Let 0 ≤ β < ℓ − 1. Let σ ∈ GQ be such that χ(σ)ℓ−1 6= 1. We
define

Lβ(1− s;
→
10, σ) :=

2

ω(χ(σ))β [χ(σ)]s − 1

∫

Z×
ℓ

[x]sx−1ω(x)βdK1(
→
10)(σ) .

Theorem 8.2. Let σ ∈ GQ be such that χ(σ)ℓ−1 6= 1.

i) Let k > 0 and let k ≡ β modulo ℓ− 1. Then we have
(35)

Lβ(1 − k;
→
10, σ) =

2

χ(σ)k − 1

∫

Z×
ℓ

xk−1dK1(
→
10)(σ) =

2(1− ℓk−1)(k − 1)!

χ(σ)k − 1
lk(

→
10)(σ) .

ii) Let k > 0 and let β be even. Then we have

(36) Lβ(1− k;
→
10, σ) = −

1

k
Bk,ωβ−k .

iii) Let k and β be even and let k ≡ β modulo ℓ− 1. Then we have

(37) Lβ(1− k;
→
10, σ) = −(1− ℓk−1)

Bk

k
= (1 − ℓk−1)ζ(1 − k) .

Proof. Let us assume that k ≡ β modulo ℓ − 1. Observe that then [χ(σ)]k =
χ(σ)kω(χ(σ))−β and xk−1 = [x]kx−1ω(x)β . Hence we get

Lβ(1− k;
→
10, σ) =

2

χ(σ)k − 1

∫

Z×
ℓ

xk−1dK1(
→
10)(σ).

Observe that
∫

Z×
ℓ

xk−1dK1(
→
10)(σ) = (1− ℓk−1) · (k − 1)! lk(

→
10)(σ)

by the equalities (33) and (32). Now we shall prove the point ii). Let β be even.
Then we have

Lβ(1− k;
→
10, σ) =

2

ω(χ(σ))β−kχ(σ)k − 1

∫

Z×
ℓ

xk−1ω(x)β−kdK1(
→
10)(σ) .

It follows from Lemma 4.1 and the equality E
(n)
1,χ(σ)(ℓ

n − i) = −E
(n)
1,χ(σ)(i) that

∫

Z×
ℓ

xk−1ω(x)β−kdK1(
→
10)(σ) =

1

2

∫

Z×
ℓ

xk−1ω(x)β−kdE1,χ(σ) .
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Hence we get that

Lβ(1− k;
→
10, σ) =

1

ω(χ(σ))β [χ(σ)]k − 1

∫

Z×
ℓ

[x]kx−1ω(x)βdE1,χ(σ) .

Therefore Lβ(1 − k;
→
10, σ) = − 1

kBk,ωβ−k by [8, Chapter 4, Theorem 3.2.],
It rests to show iii). If k ≡ β modulo ℓ− 1 then

Lβ(1 − k;
→
10, σ) =

2

χ(σ)k − 1

∫

Z×
ℓ

xk−1dK1(
→
10)(σ)

by the point i) already proved. Hence it follows from (32) , (33) and (34) that

2

χ(σ)k − 1

∫

Z×
ℓ

xk−1dK1(
→
10)(σ) =

2(1− ℓk−1)

χ(σ)k − 1

∫

Zℓ

xk−1dK1(
→
10)(σ) =

2(1− ℓk−1) · (k − 1)!

χ(σ)k − 1
lk(

→
10) = −(1− ℓk−1)

Bk

k
= (1− ℓk−1)ζ(1 − k) .

�

The ℓ-adic L-functions were first defined in [7]. The other construction is given
in [6]. We shall use the definition which appear in [8]. Following Lang (see [8]) we
define the Kubota-Leopoldt ℓ-adic L-functions by

Lℓ(1 − s; Φ) :=
1

Φ(c)[c]s − 1

∫

Z×
ℓ

[x]s · x−1 · Φ(x)dE1,c(x) ,

where Φ is a character of finite order on Z×
ℓ and c ∈ Z×

ℓ .

We recall that

(38) Lℓ(1− k, ω
β) = −

1

k
Bk,ωβ−k

for any positive integer k (see [8, Chapter 4,Theorem 3.2.]). In particular if k ≡ β
modulo ℓ− 1 then we have

(39) Lℓ(1− k, ω
β) = −

1

k
Bk,1 = −(1− ℓk−1)

Bk

k
,

where 1 : Z×
ℓ → {1} denotes the trivial character of Z×

ℓ .

Corollary 8.3. Let β be even and 0 ≤ β ≤ ℓ − 3. Let σ ∈ GQ be such that

χ(σ)ℓ−1 6= 1. The function Lβ(1− s;
→
10, σ) does not depend on σ and it is equal to

the Kubota-Leopoldt ℓ-adic L-function Lℓ(1 − s;ω
β).

Proof. Let σ1 and σ2 belonging to GQ be such that χ(σ1)
ℓ−1 6= 1 and χ(σ2)

ℓ−1 6= 1.
It follows from the point ii) of Theorem 8.2. that

Lβ(1− k;
→
10, σ1) = Lβ(1− k;

→
10, σ2)

for k a positive integer. Hence

Lβ(1− s;
→
10, σ1) = Lβ(1− s;

→
10, σ2)

because the functions coincide on the dense subset of Zℓ. It follows from the point

iii) of Theorem 8.2 and (39) that Lβ(1 − s;
→
10, σ) is the Kubota-Leopoldt ℓ-adic

L-function Lℓ(1 − s;ω
β). �

Remark 8.4.
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i) If β is odd then the functions Lβ(1−s;
→
10, σ) and Zβ(1−s;

→
10, σ) do depend

on σ.
ii) We can view the result of Corollary 8.3 as a new construction of the Kubota-

Leopoldt ℓ-adic L-functions.

9. ℓ-adic functions associated to measure K1(−1)

In this section we identify ℓ-adic functions

Zβ
0 (1 − s;−1, σ)

constructed with an aid of the measure K1(−1). Let ϕ be a path on P1
Q̄ \ {0, 1,∞}

from
→
01 to −1 as on the picture.

Picture 6

Let us set

δ := ϕ · x
1
2 .

Proposition 9.1. We have

l(−1)δ = 0, li1(−1) = l1(−1)δ = κ(2),

where κ(2) is a Kummer character associated to 2,

(40) lik(−1)δ = lk(−1)δ =
1− 2k−1

2k−1
lk(

→
10)p

for k > 1 (p is the standard path from
→
01 to

→
10).

Proof. The path δ is chosen so that l(−1)δ = l(
→
10)p = 0. The formula (40) then

follows from the distribution relation

2k−1
(

lk(
→
10) + lk(−1)δ

)

= lk(
→
10)p ,

whose detailed proof can be found in [11]. �

From now on we assume that ℓ is an odd prime. Let ϕ(n) be the path ϕ0 := ϕ
considered on Vn = P1

Q̄ \ ({0,∞}∪ µℓn). Let us set

δn := ϕ(n) · x1/2
n

for n ∈ N (the loop xn around 0 is as in section 2). Observe that the constant
family ((−1))n∈N is a compatible family of ℓn-th roots of −1.

Lemma 9.2. We have

(δn)n∈N ∈ lim
←−n

π(Vn;−1,
→
01) .
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Proof. Let f : C× → C× be given by f(z) = zℓ. Then we have

f(δ) = f(ϕ · x1/2) = f(ϕ) · f(x1/2) = ϕ · x−
ℓ−1
2 · x

ℓ
2 = ϕ · x1/2 = δ .

We can assume that all happens in a small neighbourhood of 0, as the image of the
interval [−1,−ε] (ε > 0 and small) is the interval [−1,−εℓ]. �

It follows from Proposition 2.2 that for r > 0 we get measures

Kr(−1) .

Hence it follows from Theorem 2.5 (the polylogarithmic case was already proved in
[9]) that

(41) lk(−1)δ = lik(−1)δ =
1

(k − 1)!

∫

Zℓ

xk−1dK1(−1) .

Finally it follows from Proposition 5.3, point i) or the careful examination of the
formula v) of Proposition 5.1 that

(42)

∫

Zℓ

xk−1dK1(−1) =
1

1− ℓk−1

∫

Z×
ℓ

xk−1dK1(−1) .

Definition 9.3. Let 0 ≤ β < ℓ− 1. For σ ∈ GQ such that χ(σ)ℓ−1 6= 1 we define

Lβ(1− s;−1, σ) :=
2

ω(χ(σ))β [χ(σ)]s − 1

∫

Z×
ℓ

[x]sx−1ω(x)βdK1(−1)δ(σ) .

Theorem 9.4. Let σ ∈ GQ be such that χ(σ)ℓ−1 6= 1.

i) Let k ≡ β modulo ℓ− 1. Then we have.

Lβ(1 − k;−1, σ) =
2(1− ℓk−1) · (k − 1)!

χ(σ)k − 1
lk(−1)δ =

2(1− ℓk−1) · (k − 1)!

χ(σ)k − 1
·
1− 2k−1

2k−1
· lk(

→
10)p .

ii) Let k and β be even and let k ≡ β modulo ℓ− 1. Then we have

Lβ(1 − k;−1, σ) = (1− ℓk−1) ·
1− 2k−1

2k−1
·
−Bk

k
=

(1− ℓk−1)(1− 2k−1)

2k−1
ζ(1 − k) .

Proof. The point i) follows from the formulas (42), (41) and (40). The point ii)

follows from the point i), the formula (34) and the equality ζ(1− k) = −Bk

k . �

Corollary 9.5. Let β be even and 0 ≤ β ≤ ℓ − 3. Let σ ∈ GQ be such that
χ(σ)ℓ−1 6= 1. The function Lβ(1− s;−1, σ) does not depend on σ and we have

(43) Lβ(1− s;−1, σ) =
1− 2−1ω(2)β[2]s

2−1ω(2)β [2]s
Lℓ(1− s, ω

β) .

Proof. Let σ1 and σ2 belonging to GQ be such that χ(σ1)
ℓ−1 6= 1 6= χ(σ2)

ℓ−1.
Then it follows from Theorem 9.4, ii) that the functions Lβ(1 − s;−1, σ1) and
Lβ(1− s;−1, σ2) coinside on the dense subset

{k ∈ N | k ≡ β mod ℓ− 1}

of Zℓ. Therefore

Lβ(1− s;−1, σ1) = Lβ(1− s;−1, σ2)
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for any s ∈ Zℓ. For k ∈ N and k ≡ β modulo ℓ− 1 it follows from (39) that

1− 2−1ω(2)β[2]k

2−1ω(2)β [2]k
Lℓ(1 − k, ω

β) =
1− 2k−1

2k−1
(1− ℓk−1)ζ(1 − k) .

Hence the formula (43) of the corollary follows from Theorem 2.4, point ii), because
the both functions coinside on the dense subset {k ∈ N | k ≡ β mod ℓ− 1} of Zℓ. �

10. Hurwitz zeta functions and Dirichlet L-series

Letm be a positive integer not divisible by ℓ. In this section we identify functions
corresponding to measures K1(ξ

i
m)(σ) ∓K1(ξ

m−i
m )(σ).

Let 0 ≤ β < ℓ− 1 and let ε ∈ {1,−1}. Let us set

Zβ
0 (1− s; (ξ

−i
m ) + ε(ξim), σ) :=

∫

Z×
ℓ

[x]sx−1ω(x)βd
(

K1(ξ
−i
m )(σ) + εK1(ξ

i
m)(σ)

)

.

First we fix paths αi from
→
01 to ξim for 0 < i < m (see Picture 7).

Picture 7

Let us set
βi := αi · x

− i
m

for 0 < i < m. Observe that then l(ξim)βi
= 0. Hence we have

(44) Λβi
(X,Y ) ≡

∞
∑

k=1

lk(ξ
i
m)βi

Y Xk−1 mod I ′2(X,Y ) .

Let h : P1 \ {0, 1,∞}→ P1 \ {0, 1,∞} be given by

h(z) = 1/z .

Let us define

z := Γ−1 · h(x) · Γ ,

where Γ = Γ0 (see Picture 4). Then x · y · z = 1 in π1(V0,
→
01).

Lemma 10.1. Let 0 < i < m
2 . Then

βm−i = h(βi) · Γ · z
i
m · x

i
m .

Proof. We have

βm−i = αm−i · x
−m−i

m = αm−i · x
−1 · x

i
m = h(αi) · Γ · x

i
m =

h(αi · x
− i

m ) · h(x
i
m ) · Γ · x

i
m = h(βi) · Γ · z

i
m · x

i
m .

�

We shall prove the following result.
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Theorem 10.2. Let m be a positive integer not divisible by ℓ. We have

lk(ξ
−i
m )βm−i

+ (−1)klk(ξ
i
m)βi

=
1

k!
Bk(

i

m
) · (1− χk) .

To prove Theorem 10.2 we shall need several lemmas. It follows from Lemma
10.1, [14, Lemma 1.0.6] and the commuting of h with the action of GQ (see also
[15, formula 10.0.1]) that

fβm−i
= f

h(βi)·Γ·z
i
m ·x

i
m

=

x−
i
m ·

(

z−
i
m ·

(

Γ−1 · h∗(fβi
) · Γ · fΓ

)

· z
i
m · f

z
i
m

)

· x
i
m · f

x
i
m
.

We recall that Z = −log(expX · expY ). Therefore we get the equality of formal
power series

(45) Λβm−i
(X,Y ) =

e−
i
m

X ·
(

e−
i
m

Z ·
(

Λβi
(Z, Y ) · ΛΓ(X,Y )

)

· e
i
m

Z · Λ
z

i
m
(X,Y )

)

· e
i
m

X · e
i
m

(χ−1)X .

Taking logarithm of both sides of the equality (45) we get

(46) logΛβm−i
(X,Y ) =

[

e−
i
m

X ·

((

e−
i
m

Z ·[logΛβi
(Z, Y )©logΛΓ(X,Y )]·e

i
m

Z
)

©logΛ
z

i
m
(X,Y )

)

·e
i
m

X
]

©
i

m
(χ− 1)X .

We shall calculate successive terms of the left hand side of the equality (46)
modulo the ideal I ′2(X,Y ).

Lemma 10.3. We have

(47) logΛ
z

i
m
(X,Y ) ≡

Y ·
[(exp( i

m (1 − χ)X)− exp(− i
mχX)

expX − 1
+

χ

exp(χX)− 1
· (e−

i
m

χX − 1)
)

·
i
m (1− χ)X

exp( i
m (1− χ)X)− 1

]

+
i

m
(1− χ)X modulo I ′2(X,Y ) .

Proof. We have

f
z

i
m
(σ) = z−

i
m · σ(z

i
m ) = (x · y)

i
m · (σ(x) · σ(y))−

i
m ≡ (x · y)

i
m · (xχ(σ) · yχ(σ))−

i
m

modulo commutators with two or more y’s. Hence we get

logΛ
z

i
m
(X,Y ) ≡

i

m
(X © Y )© (−

i

m
(χX © χY )) ≡

( i

m
X + Y ·

i
mX

expX − 1

)

©
(

−
i

m
χX + Y

− i
mχX

exp(χX)− 1

)

mod I ′2(X,Y ) .

Applying the formula from Lemma 0.2.1 we get the congruence (47) of the lemma.
�

Lemma 10.4. We have

ΛΓ(X,Y )− 1 ≡ Y
( 1

expX − 1
−

χ

exp(χX)− 1

)

mod I ′2(X,Y ) .
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Proof. Observe that Γ = h(p)−1 · s · p. Hence we have

fΓ = Γ−1 · h∗(f
−1
p ) · Γ · p−1 · fs · p · fp .

Therefore after the embedding of π1(P
1
Q̄ \ {0, 1,∞},

→
01) into Qℓ{{X,Y }} we get

ΛΓ(X,Y ) = Λp(Z, Y )−1 · e
1
2 (χ−1)Y · Λp(X,Y ) .

Hence it follows from the congruence (3) that

logΛΓ(X,Y ) = (−logΛp(Z, Y ))© (
1

2
(χ− 1)Y )© logΛp(X,Y ) ≡

(

∞
∑

k=2

(−1)klk(
→
10)pY X

k−1
)

©
(1

2
(χ− 1)Y

)

©
(

∞
∑

k=2

lk(
→
10)pY X

k−1
)

≡

1

2
(χ− 1)Y +

∞
∑

k=1

2l2k(
→
10)pY X

2k−1 mod I ′2(X,Y ) .

In [20] we have shown that

l2k(
→
10)p =

B2k

2 · (2k)!
(1− χ2k)

(see also [10, Proposition 5.13]). Therefore we get

logΛΓ(X,Y ) ≡

∞
∑

k=1

Bk

k!
(1− χk)Y Xk−1 mod I ′2(X,Y ) .

It follows from the definition of the Bernoulli numbers that the right hand side of
the last congruence is equal

Y
( 1

expX − 1
−

1

X

)

− Y
( χ

exp(χX)− 1
−

1

X

)

= Y
( 1

expX − 1
−

χ

exp(χX)− 1

)

.

It is clear that ΛΓ(X,Y ) − 1 ≡ logΛΓ(X,Y ) modulo I ′2(X,Y ). Hence the lemme
follows. �

Proof of Theorem 10.2. Let us set

Ai(X) :=

∞
∑

k=1

lk(ξ
i
m)βi

Xk−1 .

Observe that

logΛβi
(Z, Y )© logΛΓ(X,Y ) ≡ Y

(

Ai(−X) +
1

eX − 1
−

χ

eχX − 1

)

mod I ′2(X,Y )

and

(48) e−
i
m

Z
(

logΛβi
(Z, Y )© logΛΓ(X,Y )

)

e
i
m

Z ≡

Y
(

Ai(−X) +
1

expX − 1
−

χ

exp(χX)− 1

)

e−
i
m

X mod I ′2(X,Y ) .

Let us denote by
S(X)

the formal power series in the square bracket of the congruence (47) of Lemma 10.3,
i.e. we have

logΛ
z

i
m
(X,Y ) ≡ Y S(X) +

i

m
(1 − χ)X mod I ′2(X,Y ) .
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It follows from the congruences (48) and (47) and Lemma 0.2.1 that
(49)

e−
i
m

X ·
(

(e−
i
m

Z · (logΛβi
(Z, Y )© logΛΓ(X,Y )) · e

i
m

Z)© logΛ
z

i
m
(X,Y )

)

· e
i
m

X ≡

Y ·
(

(Ai(−X) +
1

expX − 1
−

χ

exp(χX)− 1
) · e−

i
m

X ·

exp( i
m (1− χ)X) · i

m (1− χ)X

exp( i
m (1− χ)X)− 1

+ S(X)
)

· e
i
m

X +
i

m
(1− χ)X mod I ′2(X,Y ) .

Following the equality (46) it rests to calculate the ©-product of the right hand
side of (49) with i

m (1 − χ)X . Using once more Lemma 0.2.1 we get

(50) logΛβm−i
(X,Y ) ≡ Y

(

Ai(−X)+
exp( i

mX)

expX − 1
−
χ exp( i

mχX)

exp(χX)− 1

)

mod I ′2(X,Y ) .

We recall that the Bernoulli polynomials Bk(t) are defined by the generating func-
tion

X exp(tX)

expX − 1
=

∞
∑

k=0

Bk(t)

k!
Xk .

Therefore finally we get the following congruence

(51) Y
(

∞
∑

k=1

lk(ξ
m−i
m )βm−i

Xk−1
)

≡

Y
(

∞
∑

k=1

(−1)k−1lk(ξ
i
m)βi

Xk−1 +

∞
∑

k=1

Bk(
i
m )

k!
· (1− χk)Xk−1

)

.

Comparing the coefficients we get

lk(ξ
−i
m )βm−i

+ (−1)klk(ξ
i
m)βi

=
Bk(

i
m )

k!
(1− χk) .

�

Proposition 10.5. Let m be a positive integer not divisible by ℓ. We have

(52)
1

1− χk

∫

Zℓ

xk−1d(K1(ξ
−i
m ) + (−1)kK1(ξ

i
m)) =

Bk(
i
m )

k

for 0 < i < m and k ≥ 1.

Proof. For 0 < i < m
2 the proposition follows immediately from Theorem 2.5 (see

also [9, Proposition 3]). If m
2 < i < m then we use the equality Bk(1 − X) =

(−1)kBk(X) (see [3, page 41]). �

We recall here the definition of Hurwitz zeta functions. Let 0 < x ≤ 1. Then
one defines

ζ(s, x) :=
∞
∑

n=0

(n+ x)−s

(see [3, page 41]). The function ζ(s, x) can be continued beyond the regionℜ(s) > 1.
One shows that

ζ(1 − n, x) = −
Bn(x)

n
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for all n > 0 (see [3, Section 2.3, Theorem 1]). We shall construct ℓ-adic non-
Archimedean analogues of the Hurwitz zeta functions using measures K1(ξ

−α
m ) ±

K1(ξ
α
m).

Let α = a
b be a rational number and let a and b be integers. We assume that

b and m are relatively prime. Then we define the integer 〈α〉 by the conditions
0 ≤ 〈α〉 < m and 〈α〉 ≡ α modulo m.

Proposition 10.6. Let m be a positive integer not divisible by ℓ. Let a be the
order of ℓ in (Z/mZ)×. Let 0 < α < m be such that (α,m) = 1. Then we have

(53)
1

1− χk

∫

Z×
ℓ

xk−1d
(

K1(ξ
−αℓ−p

m ) + (−1)kK1(ξ
αℓ−p

m )
)

=

1

k

(

Bk(
〈αℓ−p〉

m
)− ℓk−1Bk(

〈αℓ−p−1〉

m
)
)

for p = 0, 1, . . . a− 1.

Proof. Observe that
∫

Zℓ

xk−1dK1(ξ
α
m) =

a−1
∑

i=0

ℓ(k−1)i

1− ℓ(k−1)a

∫

Z×
ℓ

xk−1K1(ξ
αℓ−i

m )

by Proposition 5.3. Hence it follows from Proposition 10.5 that

(1 − ℓ(k−1)a)
1

k
Bk(
〈αℓ−j〉

m
) =

1

1− χk

a−1
∑

i=0

ℓ(k−1)i

∫

Z×
ℓ

xk−1d
(

K1(ξ
−αℓ−j−i

m ) + (−1)kK1(ξ
αℓ−j−i

m )
)

for j = 0, 1, . . . , a − 1. Multiplying the (p + 1)th equation by ℓk−1 and next sub-
tracting from the pth equation and dividing by (1 − ℓ(k−1)a) we get the equalities
(53) of the proposition. �

Remark 10.6.1 A similar formula as the right hand side of equalities (53) appears
in [12, Theorem 1].

Let ε ∈ {1,−1}. We define

Lβ(1− s; (ξ−i
m ) + ε(ξim), σ) :=

1

ω(χ(σ))β [χ(σ)]s − 1
· Zβ

0 (1− s; (ξ
−i
m ) + ε(ξim), σ) =

1

ω(χ(σ))β [χ(σ)]s − 1

∫

Z×
ℓ

[x]sx−1ω(x)βd
(

K1(ξ
−i
m )(σ) + εK1(ξ

i
m)(σ)

)

.

Proposition 10.7. Let 0 ≤ β < ℓ − 1 and let σ ∈ GQ be such that χ(σ)ℓ−1 6= 1.
Then for k ≡ β modulo ℓ − 1 we have

Lβ(1− k; (ξ−i
m ) + (−1)β(ξim), σ) =

1

k

(

Bk(
〈i〉

m
)− ℓk−1Bk(

〈iℓ−1〉

m
)
)

.

Proof. The proposition follows immediately from Proposition 10.6. �

Corollary 10.8. Let σ and σ1 be such that χ(σ)ℓ−1 6= 1 and χ(σ1)
ℓ−1 6= 1. Then

we have

Lβ(1 − s; (ξ−i
m ) + (−1)β(ξim), σ) = Lβ(1− s; (ξ−i

m ) + (−1)β(ξim), σ1) .
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Proof. Both functions take the same values at the dense subset of Zℓ, hence they
are equal. �

Remark 10.8.1. Notice that the function Lβ(1−s; (ξ−i
m )+(−1)β(ξim), σ) does not

depend on the choice of σ such that χ(σ)ℓ−1 6= 1. This function is then an ℓ-adic
non-Archimedean analogues of the Hurwitz zeta function ζ(s, i

m ).

Let ψ : (Z/qZ)× → Q̄× be a primitive Dirichlet character. The L-series attached
to ψ is defined by

L(s, ψ) =

∞
∑

n=1

ψ(n)

ns

for ℜ(s) > 1. Then one shows that

L(s, ψ) =

q
∑

a=1

ψ(a)q−sζ(s,
a

q
)

and for n > 1 one has

L(1− n, ψ) = −
1

n
qn−1

q
∑

a=1

ψ(a) · Bn(
a

q
)

(see [13, Chapter 4, page 31 and Theorem 4.2.]).

Having ℓ-adic non-Archimedean Hurwitz zeta functions we shall define ℓ-adic
Dirichlet L-series. Let m be a positiveinteger not divisible by ℓ. Let

ψ : (Z/mZ)× → Q̄×
ℓ

be a primitive Dirichlet character. Let 0 ≤ β < ℓ − 1 and let ε ∈ {1,−1}. Let
σ ∈ GQ̄ be such that χ(σ)ℓ−1 6= 1. We define

Lβ
ℓ (1− s;ψ, ε, σ) := −ω(m)β[m]sm−1

m
∑

a=1

ψ(a)Lβ(1− s; (ξ−a
m ) + ε(ξam), σ) .

Proposition 10.9.

i) The function Lβ
ℓ (1− s;ψ, (−1)

β, σ) does not depend on a choice of σ ∈ GQ.
ii) For k ≡ β modulo ℓ− 1 we have

Lβ
ℓ (1− s;ψ, (−1)

β, σ) = (1− ψ(ℓ)ℓk−1)L(1 − k, ψ) .

Proof. We calculate

Lβ
ℓ (1−s;ψ, (−1)

β, σ) = −ω(m)β[m]km−1
m
∑

a=1

ψ(a)Lβ(1−k; (ξ−a
m )+(−1)β(ξam), σ) =

−mk−1
m
∑

a=1

ψ(a)
1

k

(

Bk(
a

m
)− ℓk−1Bk(

〈aℓ−1〉

m
)
)

=

−mk−1 1

k

(

m
∑

a=1

ψ(a)Bk(
a

m
)− ℓk−1

m
∑

a=1

ψ(ℓ)ψ(aℓ−1)Bk(
〈aℓ−1〉

m
)
)

=

L(1− k, ψ)− ℓk−1ψ(ℓ)L(1− k, ψ) = (1− ψ(ℓ)ℓk−1)L(1− k, ψ).

Hence we have proved the point ii). The first statement is now clear. �



ON ℓ-ADIC GALOIS L-FUNCTIONS 39

Remark 10.10. If ε 6= (−1)β then the functions Lβ
ℓ (1 − s;ψ, ε, σ) do depend on

σ ∈ GQ. We think that the measure
m
∑

a=1

ψ(a)
(

K1(ξ
−a
m )(σ) + εK1(ξ

a
m)(σ)

)

can be called ℓ-adic Dirichlet L-series of the character ψ. The measure K1(
→
10) is

then ℓ-adic zeta function. In fact these measures can be considered as measures on
Ẑ not only on Zℓ (see [9] and also [21]).

11. ℓ-adic L-functions of Z[1/m]

The functions Lℓ(1−s;−1, σ) considered in Section 9 can be view as the ℓ-adic L-
function of Z[1/2]. Let p1, p2, . . . , pr be different prime numbers. Below we propose
to define an ℓ-adic L-functions of Z[1/m].

Lemma 11.1. Let p1, p2, . . . , pr be different prime numbers. Let m = p1p2 . . . pr.
Then we have

m−1
∑

i=1,(i,m)=1

Bk

(

〈
i

m
〉
)

=
(

r
∏

j=1

(1− pk−1
j )

pk−1
j

)

Bk .

Proof. The distribution formula for Bernoulli polynomials implies the equality

(54) mk−1
(

m−1
∑

i=0

Bk(
i

m
)
)

= Bk .

Let P := {p1, p2, . . . , pr}. If A = {pa1 , . . . , pas
} is a subset of P we set

NA :=
p1p2 . . . pr
pa1pa2 . . . pas

.

Then we can write the equality (54) in the form

(55) mk−1
(

m−1
∑

i=0, (i,m)=1

Bk(
i

m
) +

∑

∅6=A⊂P

NA−1
∑

i=0, (i,NA)=1

Bk(
i

NA
)
)

= Bk .

The equality (54) implies immediately the formula of the lemma for r = 1. Let us
suppose that the formula of the lemma is true for all q < r. Then we get from the
equality (55) the following equality

(56) mk−1
m−1
∑

i=0, (i,m)=1

Bk(
i

m
) +

∑

∅6=A⊂P

(

∏

p∈A

pk−1
)(

∏

p∈P\A
(1− pk−1)

)

Bk = Bk .

Let r be the set {1, 2, . . . , r}. Let us write the Taylor formula for the polynomial

X1X2 . . . Xr at the point (pk−1
1 , . . . , pk−1

r ). We get

X1X2 . . . Xr = pk−1
1 pk−1

2 . . . pk−1
r +

∑

∅6=B$r

(

∏

j∈r\B
pk−1
j

)(

∏

i∈B

(Xi−p
k−1
i )

)

+

r
∏

i=1

(Xi−p
k−1
i ).

Setting (X1, . . . , Xr) = (1, . . . , 1) we get

(57)

r
∏

i=1

(1 − pk−1
i ) +

∑

B$r

(

∏

j∈r\B
pk−1
j

)

·
(

∏

i∈B

(1− pk−1
i )

)

= 1 .
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Comparing the equalities (56) and (57) we get the equality of the lemma. �

For 0 ≤ β < ℓ− 1 and σ ∈ GQ such that χ(σ)ℓ−1 6= 1 we define

Lβ(1− s,Z[
1

m
], σ) :=

2

ω(χ(σ))β [χ(σ)]β − 1
·

∫

Z×
ℓ

[x]sx−1ω(x)βd
(

m−1
∑

i=1, (i,m)=1

K1(ξ
−i
m )(σ)

)

.

Let us assume that β is even and k ≡ β modulo ℓ− 1. From the very definition of
the function Lβ(1− s,Z[ 1

m ], σ) we have

Lβ(1− k,Z[
1

m
], σ) =

m
∑

i=1, (i,m)=1

Lβ(1− k; (ξ−i
m ) + (−1)β(ξim), σ) .

Hence it follows from Proposition 10.7 and Lemma 11.1 that

Lβ(1− k,Z[
1

m
], σ) = (−1)r

1

k
(1 − ℓk−1)Bk

r
∏

j=1

(pjp
−k
j − 1) .

Hence it follows from the equality (39) that

(58) Lβ(1− k,Z[
1

m
], σ) = Lℓ(1− k, ω

β)

r
∏

j=1

(pj [pj ]
−kω(pj)

−β − 1) .

Proposition 11.2. Let p1, p2, . . . , pr be different prime numbers and let m =
p1 · p2 . . . pr. Let β be even and let 0 ≤ β < ℓ − 1. Let σ ∈ GQ be such that
χ(σ)ℓ−1 6= 1. Then we have

Lβ(1− s,Z[
1

m
], σ) =

r
∏

j=1

(

pj [pj ]
−s · ω(pj)

−β − 1
)

Lℓ(1− s, ω
β) .

Proof. The proposition follows immediately from the equality (58). �

Proposition 11.3. Let p be a prime number. Then we have

∫

Zℓ

[x]x−1ω(x)d
(

p−1
∑

i=1

K1(ξ
−1
p )(σ)

)

= l(p)(σ) .

Proof. The integral is equal
∑p−1

i=1 l1(ξ
−i
p )(σ) = l(p)(σ). �

Notice that
∫

Z×
ℓ

dK1(ξ
j
p)(σ) = l(1− ξjp)(σ) − l(1− ξ

jℓ−1

p )(σ) ,

hence
∫

Z×
ℓ

d(
∑p−1

i=1 K1(ξ
−i
p )(σ)) = 0.

In view of Proposition 11.2 and 11.3 we can consider the measure
∑p−1

i=1 K1(ξ
−i
p )

as an ℓ-adic zeta function of the ring Z[ 1
p ]. However if m is a product of r different

prime numbers with r > 1 then the integral
∫

Zℓ
d
(
∑p−1

i=1, (i,m)=1K1(ξ
−i
m )(σ)

)

= 0,
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but dimQℓ
H1(Z[ 1

m ];Qℓ(1)) = r. We can replace the measure
∑p−1

i=1, (i,m)=1K1(ξ
−i
m )

by the measure
∑p−1

i=1 K1(ξ
−i
m ). Then

∫

Zℓ
d
(
∑p−1

i=1 K1(ξ
−i
m )(σ)

)

= l(m)(σ) and

2

ω(χ(σ))β [χ(σ)]β − 1

∫

Z×
ℓ

[x]sx−1ω(x)βd
(

p−1
∑

i=1

K1(ξ
−i
m )(σ)

)

=

(

m[m]−sω(m)−β − 1
)

Lℓ(1 − s, ω
β)

if β is even and χ(σ)ℓ−1 6= 1. We do not know which choice is better if any.

The results of this paper were presented in the international meeting on polyloga-
rithms in June 2012 in Nice and in the poster session of the Iwasawa 2012 conference
in Heidelberg.
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U.R.A. au C.N.R.S., No 168
Parc Valrose – B.P. No 71
06108 Nice Cedex 2, France

E-mail address wojtkow@math.unice.fr
Fax number 04 93 51 79 74


